Properties

Label 2-149454-1.1-c1-0-53
Degree $2$
Conductor $149454$
Sign $-1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·7-s − 8-s + 2·13-s − 2·14-s + 16-s + 3·17-s + 23-s − 5·25-s − 2·26-s + 2·28-s + 3·29-s − 31-s − 32-s − 3·34-s − 7·37-s + 12·41-s − 7·43-s − 46-s − 6·47-s − 3·49-s + 5·50-s + 2·52-s − 6·53-s − 2·56-s − 3·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.755·7-s − 0.353·8-s + 0.554·13-s − 0.534·14-s + 1/4·16-s + 0.727·17-s + 0.208·23-s − 25-s − 0.392·26-s + 0.377·28-s + 0.557·29-s − 0.179·31-s − 0.176·32-s − 0.514·34-s − 1.15·37-s + 1.87·41-s − 1.06·43-s − 0.147·46-s − 0.875·47-s − 3/7·49-s + 0.707·50-s + 0.277·52-s − 0.824·53-s − 0.267·56-s − 0.393·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55797728378418, −13.13576908661605, −12.48969439324704, −12.06682722276346, −11.57645997038348, −11.12859007078908, −10.77513225121193, −10.20260258423992, −9.648753947131775, −9.384676673203339, −8.620891432474490, −8.164980502745437, −8.006557868301727, −7.311532208659956, −6.801106345440911, −6.293679584067564, −5.623434991748999, −5.274898478614660, −4.581799969108298, −3.939006248061618, −3.381330175285762, −2.761242752722216, −1.992868171972492, −1.504618259215513, −0.9009889269403514, 0, 0.9009889269403514, 1.504618259215513, 1.992868171972492, 2.761242752722216, 3.381330175285762, 3.939006248061618, 4.581799969108298, 5.274898478614660, 5.623434991748999, 6.293679584067564, 6.801106345440911, 7.311532208659956, 8.006557868301727, 8.164980502745437, 8.620891432474490, 9.384676673203339, 9.648753947131775, 10.20260258423992, 10.77513225121193, 11.12859007078908, 11.57645997038348, 12.06682722276346, 12.48969439324704, 13.13576908661605, 13.55797728378418

Graph of the $Z$-function along the critical line