Properties

Label 2-149058-1.1-c1-0-187
Degree $2$
Conductor $149058$
Sign $-1$
Analytic cond. $1190.23$
Root an. cond. $34.4997$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 8-s + 10-s + 11-s + 16-s − 17-s + 19-s + 20-s + 22-s + 3·23-s − 4·25-s − 9·29-s + 4·31-s + 32-s − 34-s + 9·37-s + 38-s + 40-s + 8·41-s − 7·43-s + 44-s + 3·46-s − 8·47-s − 4·50-s + 10·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.353·8-s + 0.316·10-s + 0.301·11-s + 1/4·16-s − 0.242·17-s + 0.229·19-s + 0.223·20-s + 0.213·22-s + 0.625·23-s − 4/5·25-s − 1.67·29-s + 0.718·31-s + 0.176·32-s − 0.171·34-s + 1.47·37-s + 0.162·38-s + 0.158·40-s + 1.24·41-s − 1.06·43-s + 0.150·44-s + 0.442·46-s − 1.16·47-s − 0.565·50-s + 1.37·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149058 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149058 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149058\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1190.23\)
Root analytic conductor: \(34.4997\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 149058,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51280641822304, −13.04975116965316, −12.94200527408597, −12.12401528406069, −11.67885581421168, −11.31804789412521, −10.89515887657558, −10.15852489442802, −9.874565298711069, −9.171833852110127, −8.978908133630349, −8.041376748770744, −7.751772391595160, −7.126665478254369, −6.637265956731092, −6.047942218372746, −5.705970973283917, −5.177249056275239, −4.476802169461088, −4.123133714707382, −3.454513212515387, −2.865170146639522, −2.294488885438494, −1.655733390085369, −1.038017159443796, 0, 1.038017159443796, 1.655733390085369, 2.294488885438494, 2.865170146639522, 3.454513212515387, 4.123133714707382, 4.476802169461088, 5.177249056275239, 5.705970973283917, 6.047942218372746, 6.637265956731092, 7.126665478254369, 7.751772391595160, 8.041376748770744, 8.978908133630349, 9.171833852110127, 9.874565298711069, 10.15852489442802, 10.89515887657558, 11.31804789412521, 11.67885581421168, 12.12401528406069, 12.94200527408597, 13.04975116965316, 13.51280641822304

Graph of the $Z$-function along the critical line