| L(s)  = 1  |   + 2-s     + 4-s   + 5-s       + 8-s     + 10-s   + 11-s           + 16-s   − 17-s     + 19-s   + 20-s     + 22-s   + 3·23-s     − 4·25-s         − 9·29-s     + 4·31-s   + 32-s     − 34-s       + 9·37-s   + 38-s     + 40-s   + 8·41-s     − 7·43-s   + 44-s     + 3·46-s   − 8·47-s       − 4·50-s       + 10·53-s  + ⋯ | 
 
| L(s)  = 1  |   + 0.707·2-s     + 1/2·4-s   + 0.447·5-s       + 0.353·8-s     + 0.316·10-s   + 0.301·11-s           + 1/4·16-s   − 0.242·17-s     + 0.229·19-s   + 0.223·20-s     + 0.213·22-s   + 0.625·23-s     − 4/5·25-s         − 1.67·29-s     + 0.718·31-s   + 0.176·32-s     − 0.171·34-s       + 1.47·37-s   + 0.162·38-s     + 0.158·40-s   + 1.24·41-s     − 1.06·43-s   + 0.150·44-s     + 0.442·46-s   − 1.16·47-s       − 0.565·50-s       + 1.37·53-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 149058 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149058 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 - T \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 7 |  \( 1 \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 5 |  \( 1 - T + p T^{2} \)  |  1.5.ab  | 
 | 11 |  \( 1 - T + p T^{2} \)  |  1.11.ab  | 
 | 17 |  \( 1 + T + p T^{2} \)  |  1.17.b  | 
 | 19 |  \( 1 - T + p T^{2} \)  |  1.19.ab  | 
 | 23 |  \( 1 - 3 T + p T^{2} \)  |  1.23.ad  | 
 | 29 |  \( 1 + 9 T + p T^{2} \)  |  1.29.j  | 
 | 31 |  \( 1 - 4 T + p T^{2} \)  |  1.31.ae  | 
 | 37 |  \( 1 - 9 T + p T^{2} \)  |  1.37.aj  | 
 | 41 |  \( 1 - 8 T + p T^{2} \)  |  1.41.ai  | 
 | 43 |  \( 1 + 7 T + p T^{2} \)  |  1.43.h  | 
 | 47 |  \( 1 + 8 T + p T^{2} \)  |  1.47.i  | 
 | 53 |  \( 1 - 10 T + p T^{2} \)  |  1.53.ak  | 
 | 59 |  \( 1 - 6 T + p T^{2} \)  |  1.59.ag  | 
 | 61 |  \( 1 + 11 T + p T^{2} \)  |  1.61.l  | 
 | 67 |  \( 1 + 12 T + p T^{2} \)  |  1.67.m  | 
 | 71 |  \( 1 + 6 T + p T^{2} \)  |  1.71.g  | 
 | 73 |  \( 1 - 11 T + p T^{2} \)  |  1.73.al  | 
 | 79 |  \( 1 + 12 T + p T^{2} \)  |  1.79.m  | 
 | 83 |  \( 1 - 6 T + p T^{2} \)  |  1.83.ag  | 
 | 89 |  \( 1 + 12 T + p T^{2} \)  |  1.89.m  | 
 | 97 |  \( 1 - 2 T + p T^{2} \)  |  1.97.ac  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.51280641822304, −13.04975116965316, −12.94200527408597, −12.12401528406069, −11.67885581421168, −11.31804789412521, −10.89515887657558, −10.15852489442802, −9.874565298711069, −9.171833852110127, −8.978908133630349, −8.041376748770744, −7.751772391595160, −7.126665478254369, −6.637265956731092, −6.047942218372746, −5.705970973283917, −5.177249056275239, −4.476802169461088, −4.123133714707382, −3.454513212515387, −2.865170146639522, −2.294488885438494, −1.655733390085369, −1.038017159443796, 0, 
1.038017159443796, 1.655733390085369, 2.294488885438494, 2.865170146639522, 3.454513212515387, 4.123133714707382, 4.476802169461088, 5.177249056275239, 5.705970973283917, 6.047942218372746, 6.637265956731092, 7.126665478254369, 7.751772391595160, 8.041376748770744, 8.978908133630349, 9.171833852110127, 9.874565298711069, 10.15852489442802, 10.89515887657558, 11.31804789412521, 11.67885581421168, 12.12401528406069, 12.94200527408597, 13.04975116965316, 13.51280641822304