Properties

Label 2-385e2-1.1-c1-0-6
Degree $2$
Conductor $148225$
Sign $1$
Analytic cond. $1183.58$
Root an. cond. $34.4032$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 2·6-s − 2·9-s + 2·12-s − 13-s − 4·16-s − 7·17-s − 4·18-s − 6·23-s − 2·26-s − 5·27-s + 5·29-s − 2·31-s − 8·32-s − 14·34-s − 4·36-s − 2·37-s − 39-s + 2·41-s − 4·43-s − 12·46-s − 3·47-s − 4·48-s − 7·51-s − 2·52-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s − 2/3·9-s + 0.577·12-s − 0.277·13-s − 16-s − 1.69·17-s − 0.942·18-s − 1.25·23-s − 0.392·26-s − 0.962·27-s + 0.928·29-s − 0.359·31-s − 1.41·32-s − 2.40·34-s − 2/3·36-s − 0.328·37-s − 0.160·39-s + 0.312·41-s − 0.609·43-s − 1.76·46-s − 0.437·47-s − 0.577·48-s − 0.980·51-s − 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148225\)    =    \(5^{2} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1183.58\)
Root analytic conductor: \(34.4032\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 148225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.196367494\)
\(L(\frac12)\) \(\approx\) \(1.196367494\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
7 \( 1 \)
11 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 - T + p T^{2} \) 1.3.ab
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43304740467611, −13.11337959471834, −12.39005292080285, −12.09966846619552, −11.63681391910170, −11.08355944292408, −10.72533129791098, −10.01884285394458, −9.386104121168873, −8.957349642195476, −8.576700128468307, −7.940972793250250, −7.478526233127634, −6.685589148833693, −6.347809108624594, −5.934207862303442, −5.269991507345697, −4.737716876906479, −4.308070418309784, −3.814397161306907, −3.100181041733829, −2.792583323819632, −2.127213292445749, −1.657180245945892, −0.2149973318117642, 0.2149973318117642, 1.657180245945892, 2.127213292445749, 2.792583323819632, 3.100181041733829, 3.814397161306907, 4.308070418309784, 4.737716876906479, 5.269991507345697, 5.934207862303442, 6.347809108624594, 6.685589148833693, 7.478526233127634, 7.940972793250250, 8.576700128468307, 8.957349642195476, 9.386104121168873, 10.01884285394458, 10.72533129791098, 11.08355944292408, 11.63681391910170, 12.09966846619552, 12.39005292080285, 13.11337959471834, 13.43304740467611

Graph of the $Z$-function along the critical line