Properties

Label 2-148104-1.1-c1-0-62
Degree $2$
Conductor $148104$
Sign $-1$
Analytic cond. $1182.61$
Root an. cond. $34.3891$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s − 17-s − 2·19-s − 2·23-s − 25-s + 10·29-s + 8·31-s + 4·35-s − 6·37-s + 2·41-s − 2·43-s − 3·49-s + 12·53-s − 10·59-s − 10·61-s − 4·67-s − 6·71-s + 10·79-s − 4·83-s − 2·85-s + 10·89-s − 4·95-s − 14·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s − 0.242·17-s − 0.458·19-s − 0.417·23-s − 1/5·25-s + 1.85·29-s + 1.43·31-s + 0.676·35-s − 0.986·37-s + 0.312·41-s − 0.304·43-s − 3/7·49-s + 1.64·53-s − 1.30·59-s − 1.28·61-s − 0.488·67-s − 0.712·71-s + 1.12·79-s − 0.439·83-s − 0.216·85-s + 1.05·89-s − 0.410·95-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148104\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1182.61\)
Root analytic conductor: \(34.3891\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 148104,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.60846208374603, −13.38270952712041, −12.49131116037208, −12.20120325842017, −11.75617710216884, −11.19462324613105, −10.60994973762156, −10.17857295391047, −9.964849387023205, −9.190556438919811, −8.736950241689572, −8.331273885950734, −7.821200773994078, −7.252267029079879, −6.559801680403236, −6.191390994450575, −5.795154091885851, −4.895961813175433, −4.797546801334067, −4.134993214322514, −3.381172179092251, −2.658482097162713, −2.235016960078651, −1.545258277800815, −1.032885967990084, 0, 1.032885967990084, 1.545258277800815, 2.235016960078651, 2.658482097162713, 3.381172179092251, 4.134993214322514, 4.797546801334067, 4.895961813175433, 5.795154091885851, 6.191390994450575, 6.559801680403236, 7.252267029079879, 7.821200773994078, 8.331273885950734, 8.736950241689572, 9.190556438919811, 9.964849387023205, 10.17857295391047, 10.60994973762156, 11.19462324613105, 11.75617710216884, 12.20120325842017, 12.49131116037208, 13.38270952712041, 13.60846208374603

Graph of the $Z$-function along the critical line