| L(s)  = 1  |         + 2·5-s     + 2·7-s                     − 17-s     − 2·19-s         − 2·23-s     − 25-s         + 10·29-s     + 8·31-s         + 4·35-s     − 6·37-s         + 2·41-s     − 2·43-s             − 3·49-s         + 12·53-s             − 10·59-s     − 10·61-s             − 4·67-s         − 6·71-s                 + 10·79-s         − 4·83-s     − 2·85-s         + 10·89-s             − 4·95-s     − 14·97-s         + 101-s     + 103-s         + 107-s  + ⋯ | 
 
| L(s)  = 1  |         + 0.894·5-s     + 0.755·7-s                     − 0.242·17-s     − 0.458·19-s         − 0.417·23-s     − 1/5·25-s         + 1.85·29-s     + 1.43·31-s         + 0.676·35-s     − 0.986·37-s         + 0.312·41-s     − 0.304·43-s             − 3/7·49-s         + 1.64·53-s             − 1.30·59-s     − 1.28·61-s             − 0.488·67-s         − 0.712·71-s                 + 1.12·79-s         − 0.439·83-s     − 0.216·85-s         + 1.05·89-s             − 0.410·95-s     − 1.42·97-s         + 0.0995·101-s     + 0.0985·103-s         + 0.0966·107-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 148104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 11 |  \( 1 \)  |    | 
 | 17 |  \( 1 + T \)  |    | 
| good | 5 |  \( 1 - 2 T + p T^{2} \)  |  1.5.ac  | 
 | 7 |  \( 1 - 2 T + p T^{2} \)  |  1.7.ac  | 
 | 13 |  \( 1 + p T^{2} \)  |  1.13.a  | 
 | 19 |  \( 1 + 2 T + p T^{2} \)  |  1.19.c  | 
 | 23 |  \( 1 + 2 T + p T^{2} \)  |  1.23.c  | 
 | 29 |  \( 1 - 10 T + p T^{2} \)  |  1.29.ak  | 
 | 31 |  \( 1 - 8 T + p T^{2} \)  |  1.31.ai  | 
 | 37 |  \( 1 + 6 T + p T^{2} \)  |  1.37.g  | 
 | 41 |  \( 1 - 2 T + p T^{2} \)  |  1.41.ac  | 
 | 43 |  \( 1 + 2 T + p T^{2} \)  |  1.43.c  | 
 | 47 |  \( 1 + p T^{2} \)  |  1.47.a  | 
 | 53 |  \( 1 - 12 T + p T^{2} \)  |  1.53.am  | 
 | 59 |  \( 1 + 10 T + p T^{2} \)  |  1.59.k  | 
 | 61 |  \( 1 + 10 T + p T^{2} \)  |  1.61.k  | 
 | 67 |  \( 1 + 4 T + p T^{2} \)  |  1.67.e  | 
 | 71 |  \( 1 + 6 T + p T^{2} \)  |  1.71.g  | 
 | 73 |  \( 1 + p T^{2} \)  |  1.73.a  | 
 | 79 |  \( 1 - 10 T + p T^{2} \)  |  1.79.ak  | 
 | 83 |  \( 1 + 4 T + p T^{2} \)  |  1.83.e  | 
 | 89 |  \( 1 - 10 T + p T^{2} \)  |  1.89.ak  | 
 | 97 |  \( 1 + 14 T + p T^{2} \)  |  1.97.o  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.60846208374603, −13.38270952712041, −12.49131116037208, −12.20120325842017, −11.75617710216884, −11.19462324613105, −10.60994973762156, −10.17857295391047, −9.964849387023205, −9.190556438919811, −8.736950241689572, −8.331273885950734, −7.821200773994078, −7.252267029079879, −6.559801680403236, −6.191390994450575, −5.795154091885851, −4.895961813175433, −4.797546801334067, −4.134993214322514, −3.381172179092251, −2.658482097162713, −2.235016960078651, −1.545258277800815, −1.032885967990084, 0, 
1.032885967990084, 1.545258277800815, 2.235016960078651, 2.658482097162713, 3.381172179092251, 4.134993214322514, 4.797546801334067, 4.895961813175433, 5.795154091885851, 6.191390994450575, 6.559801680403236, 7.252267029079879, 7.821200773994078, 8.331273885950734, 8.736950241689572, 9.190556438919811, 9.964849387023205, 10.17857295391047, 10.60994973762156, 11.19462324613105, 11.75617710216884, 12.20120325842017, 12.49131116037208, 13.38270952712041, 13.60846208374603