Properties

Label 2-14520-1.1-c1-0-30
Degree $2$
Conductor $14520$
Sign $-1$
Analytic cond. $115.942$
Root an. cond. $10.7676$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s − 2·13-s − 15-s + 2·17-s − 7·19-s + 21-s + 6·23-s + 25-s − 27-s + 8·29-s − 3·31-s − 35-s + 37-s + 2·39-s − 6·41-s + 45-s − 4·47-s − 6·49-s − 2·51-s + 10·53-s + 7·57-s + 4·59-s − 11·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.554·13-s − 0.258·15-s + 0.485·17-s − 1.60·19-s + 0.218·21-s + 1.25·23-s + 1/5·25-s − 0.192·27-s + 1.48·29-s − 0.538·31-s − 0.169·35-s + 0.164·37-s + 0.320·39-s − 0.937·41-s + 0.149·45-s − 0.583·47-s − 6/7·49-s − 0.280·51-s + 1.37·53-s + 0.927·57-s + 0.520·59-s − 1.40·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14520\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(115.942\)
Root analytic conductor: \(10.7676\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.50406293780817, −15.93626529586584, −15.11807265856939, −14.87443464565724, −14.16806471229602, −13.45976549120180, −12.95836462211889, −12.47840397024345, −11.97825987906243, −11.22038145462723, −10.68173194502855, −10.11321041360299, −9.722518085639347, −8.831002329551511, −8.472159140594152, −7.511417325955242, −6.895812050040277, −6.380763253403010, −5.823139604279727, −4.949411890305557, −4.626326023231767, −3.613287160804372, −2.837988044522218, −2.038413417958437, −1.074704321022675, 0, 1.074704321022675, 2.038413417958437, 2.837988044522218, 3.613287160804372, 4.626326023231767, 4.949411890305557, 5.823139604279727, 6.380763253403010, 6.895812050040277, 7.511417325955242, 8.472159140594152, 8.831002329551511, 9.722518085639347, 10.11321041360299, 10.68173194502855, 11.22038145462723, 11.97825987906243, 12.47840397024345, 12.95836462211889, 13.45976549120180, 14.16806471229602, 14.87443464565724, 15.11807265856939, 15.93626529586584, 16.50406293780817

Graph of the $Z$-function along the critical line