Properties

Label 2-120e2-1.1-c1-0-40
Degree $2$
Conductor $14400$
Sign $1$
Analytic cond. $114.984$
Root an. cond. $10.7230$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s − 2·11-s − 13-s − 2·17-s − 5·19-s + 6·23-s + 10·29-s + 3·31-s − 2·37-s + 8·41-s + 43-s + 2·47-s + 2·49-s − 4·53-s + 10·59-s − 7·61-s − 3·67-s − 8·71-s − 14·73-s − 6·77-s − 6·83-s − 3·91-s + 17·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.13·7-s − 0.603·11-s − 0.277·13-s − 0.485·17-s − 1.14·19-s + 1.25·23-s + 1.85·29-s + 0.538·31-s − 0.328·37-s + 1.24·41-s + 0.152·43-s + 0.291·47-s + 2/7·49-s − 0.549·53-s + 1.30·59-s − 0.896·61-s − 0.366·67-s − 0.949·71-s − 1.63·73-s − 0.683·77-s − 0.658·83-s − 0.314·91-s + 1.72·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(114.984\)
Root analytic conductor: \(10.7230\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.290338131\)
\(L(\frac12)\) \(\approx\) \(2.290338131\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.89129277989968, −15.67162526634979, −14.84060891473335, −14.56569070891860, −13.97730307560571, −13.20647468735044, −12.87818321992124, −12.08267713362127, −11.62377727585948, −10.86893732894542, −10.59693050772993, −9.962056205374998, −8.999982194948345, −8.624324108512994, −8.037908280197421, −7.418575078694474, −6.756003046390375, −6.068787339110791, −5.288736144072255, −4.511462065169995, −4.428441197464709, −3.068357537539794, −2.497465835743630, −1.649315466739159, −0.6759803058628902, 0.6759803058628902, 1.649315466739159, 2.497465835743630, 3.068357537539794, 4.428441197464709, 4.511462065169995, 5.288736144072255, 6.068787339110791, 6.756003046390375, 7.418575078694474, 8.037908280197421, 8.624324108512994, 8.999982194948345, 9.962056205374998, 10.59693050772993, 10.86893732894542, 11.62377727585948, 12.08267713362127, 12.87818321992124, 13.20647468735044, 13.97730307560571, 14.56569070891860, 14.84060891473335, 15.67162526634979, 15.89129277989968

Graph of the $Z$-function along the critical line