Properties

Label 2-143550-1.1-c1-0-38
Degree $2$
Conductor $143550$
Sign $1$
Analytic cond. $1146.25$
Root an. cond. $33.8563$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s − 11-s + 2·14-s + 16-s − 2·17-s − 2·19-s + 22-s + 4·23-s − 2·28-s + 29-s − 32-s + 2·34-s + 2·37-s + 2·38-s + 6·41-s + 6·43-s − 44-s − 4·46-s + 10·47-s − 3·49-s − 6·53-s + 2·56-s − 58-s + 6·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s − 0.301·11-s + 0.534·14-s + 1/4·16-s − 0.485·17-s − 0.458·19-s + 0.213·22-s + 0.834·23-s − 0.377·28-s + 0.185·29-s − 0.176·32-s + 0.342·34-s + 0.328·37-s + 0.324·38-s + 0.937·41-s + 0.914·43-s − 0.150·44-s − 0.589·46-s + 1.45·47-s − 3/7·49-s − 0.824·53-s + 0.267·56-s − 0.131·58-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 29\)
Sign: $1$
Analytic conductor: \(1146.25\)
Root analytic conductor: \(33.8563\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 143550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.637822972\)
\(L(\frac12)\) \(\approx\) \(1.637822972\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
29 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.12803498735274, −12.91221260766973, −12.51085540081045, −11.93502405626545, −11.27063511480346, −10.93782823481314, −10.55343430529897, −9.889166454280401, −9.557258555432025, −9.036305696570866, −8.646077137025164, −8.054622023706311, −7.531598381658208, −7.048100972409525, −6.524464361296165, −6.122998132728803, −5.523807952616080, −4.894961886485273, −4.259979795912952, −3.632602327268795, −3.045903833068839, −2.395461336715131, −2.020836979578647, −0.9082749751532866, −0.5367461898556492, 0.5367461898556492, 0.9082749751532866, 2.020836979578647, 2.395461336715131, 3.045903833068839, 3.632602327268795, 4.259979795912952, 4.894961886485273, 5.523807952616080, 6.122998132728803, 6.524464361296165, 7.048100972409525, 7.531598381658208, 8.054622023706311, 8.646077137025164, 9.036305696570866, 9.557258555432025, 9.889166454280401, 10.55343430529897, 10.93782823481314, 11.27063511480346, 11.93502405626545, 12.51085540081045, 12.91221260766973, 13.12803498735274

Graph of the $Z$-function along the critical line