Properties

Label 2-142296-1.1-c1-0-3
Degree $2$
Conductor $142296$
Sign $1$
Analytic cond. $1136.23$
Root an. cond. $33.7081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s + 9-s + 13-s + 4·15-s − 2·17-s + 2·19-s + 5·23-s + 11·25-s − 27-s − 9·29-s + 3·31-s − 10·37-s − 39-s + 3·41-s + 43-s − 4·45-s + 6·47-s + 2·51-s − 2·53-s − 2·57-s − 7·59-s − 11·61-s − 4·65-s − 7·67-s − 5·69-s − 5·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s + 1/3·9-s + 0.277·13-s + 1.03·15-s − 0.485·17-s + 0.458·19-s + 1.04·23-s + 11/5·25-s − 0.192·27-s − 1.67·29-s + 0.538·31-s − 1.64·37-s − 0.160·39-s + 0.468·41-s + 0.152·43-s − 0.596·45-s + 0.875·47-s + 0.280·51-s − 0.274·53-s − 0.264·57-s − 0.911·59-s − 1.40·61-s − 0.496·65-s − 0.855·67-s − 0.601·69-s − 0.593·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(142296\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1136.23\)
Root analytic conductor: \(33.7081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 142296,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3013780203\)
\(L(\frac12)\) \(\approx\) \(0.3013780203\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.32909400358555, −12.64275845645008, −12.46955228595838, −11.85642467106507, −11.52144605671328, −10.97641449781321, −10.82913521629267, −10.22035486534933, −9.400263857720941, −8.975862295259438, −8.566363379962645, −7.867781881128124, −7.513134600982067, −7.053563051873954, −6.684789490929719, −5.862343888518817, −5.405964138281087, −4.739861659991307, −4.318583770684874, −3.827604243781553, −3.236804179127228, −2.771128095713361, −1.684860844257928, −1.076570104899420, −0.1945002393704216, 0.1945002393704216, 1.076570104899420, 1.684860844257928, 2.771128095713361, 3.236804179127228, 3.827604243781553, 4.318583770684874, 4.739861659991307, 5.405964138281087, 5.862343888518817, 6.684789490929719, 7.053563051873954, 7.513134600982067, 7.867781881128124, 8.566363379962645, 8.975862295259438, 9.400263857720941, 10.22035486534933, 10.82913521629267, 10.97641449781321, 11.52144605671328, 11.85642467106507, 12.46955228595838, 12.64275845645008, 13.32909400358555

Graph of the $Z$-function along the critical line