Properties

Label 142296.d
Number of curves $1$
Conductor $142296$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 142296.d1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 142296.d do not have complex multiplication.

Modular form 142296.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} + q^{9} + q^{13} + 4 q^{15} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 142296.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
142296.d1 142296x1 \([0, -1, 0, -62960, -6063924]\) \(-2683675214/2187\) \(-22492803852288\) \([]\) \(698880\) \(1.4912\) \(\Gamma_0(N)\)-optimal