Properties

Label 2-141610-1.1-c1-0-51
Degree $2$
Conductor $141610$
Sign $-1$
Analytic cond. $1130.76$
Root an. cond. $33.6267$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 5-s + 2·6-s − 8-s + 9-s − 10-s + 2·11-s − 2·12-s + 6·13-s − 2·15-s + 16-s − 18-s + 8·19-s + 20-s − 2·22-s + 2·23-s + 2·24-s + 25-s − 6·26-s + 4·27-s − 6·29-s + 2·30-s − 2·31-s − 32-s − 4·33-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.447·5-s + 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.603·11-s − 0.577·12-s + 1.66·13-s − 0.516·15-s + 1/4·16-s − 0.235·18-s + 1.83·19-s + 0.223·20-s − 0.426·22-s + 0.417·23-s + 0.408·24-s + 1/5·25-s − 1.17·26-s + 0.769·27-s − 1.11·29-s + 0.365·30-s − 0.359·31-s − 0.176·32-s − 0.696·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141610\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1130.76\)
Root analytic conductor: \(33.6267\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 141610,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
17 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62250035502200, −13.11023967659765, −12.55396010367318, −11.96940379653505, −11.64247765967087, −11.12577701531377, −10.87707165818835, −10.43623003211715, −9.665155297505744, −9.373735321471180, −8.936404814895969, −8.320702637944007, −7.805314271491378, −7.147635502598255, −6.685603026333322, −6.208662734709749, −5.810190196189840, −5.280000052751757, −4.891988962381617, −3.917373748420708, −3.396796413898017, −2.926598586488426, −1.805945423882578, −1.376523530084650, −0.8754816217628506, 0, 0.8754816217628506, 1.376523530084650, 1.805945423882578, 2.926598586488426, 3.396796413898017, 3.917373748420708, 4.891988962381617, 5.280000052751757, 5.810190196189840, 6.208662734709749, 6.685603026333322, 7.147635502598255, 7.805314271491378, 8.320702637944007, 8.936404814895969, 9.373735321471180, 9.665155297505744, 10.43623003211715, 10.87707165818835, 11.12577701531377, 11.64247765967087, 11.96940379653505, 12.55396010367318, 13.11023967659765, 13.62250035502200

Graph of the $Z$-function along the critical line