Properties

Label 2-141570-1.1-c1-0-5
Degree $2$
Conductor $141570$
Sign $1$
Analytic cond. $1130.44$
Root an. cond. $33.6220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 7-s − 8-s + 10-s − 13-s − 14-s + 16-s − 5·19-s − 20-s − 6·23-s + 25-s + 26-s + 28-s − 7·31-s − 32-s − 35-s + 8·37-s + 5·38-s + 40-s − 6·41-s + 7·43-s + 6·46-s − 3·47-s − 6·49-s − 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s − 0.353·8-s + 0.316·10-s − 0.277·13-s − 0.267·14-s + 1/4·16-s − 1.14·19-s − 0.223·20-s − 1.25·23-s + 1/5·25-s + 0.196·26-s + 0.188·28-s − 1.25·31-s − 0.176·32-s − 0.169·35-s + 1.31·37-s + 0.811·38-s + 0.158·40-s − 0.937·41-s + 1.06·43-s + 0.884·46-s − 0.437·47-s − 6/7·49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141570\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1130.44\)
Root analytic conductor: \(33.6220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 141570,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4004634173\)
\(L(\frac12)\) \(\approx\) \(0.4004634173\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.34326581943221, −12.71600903818663, −12.46389921837856, −11.87872700766822, −11.36036290776320, −11.01393311145468, −10.55467280565347, −9.975910748264703, −9.578893607603830, −8.974654317232225, −8.492394002229451, −8.111314751362079, −7.497414760786826, −7.308141825107679, −6.450957623384222, −6.095659422516717, −5.567410233109568, −4.670517200960896, −4.430115484626160, −3.670909924054027, −3.140787640772169, −2.295428389201823, −1.916441191231684, −1.185945753917733, −0.2172282181822617, 0.2172282181822617, 1.185945753917733, 1.916441191231684, 2.295428389201823, 3.140787640772169, 3.670909924054027, 4.430115484626160, 4.670517200960896, 5.567410233109568, 6.095659422516717, 6.450957623384222, 7.308141825107679, 7.497414760786826, 8.111314751362079, 8.492394002229451, 8.974654317232225, 9.578893607603830, 9.975910748264703, 10.55467280565347, 11.01393311145468, 11.36036290776320, 11.87872700766822, 12.46389921837856, 12.71600903818663, 13.34326581943221

Graph of the $Z$-function along the critical line