Properties

Label 2-141570-1.1-c1-0-56
Degree $2$
Conductor $141570$
Sign $1$
Analytic cond. $1130.44$
Root an. cond. $33.6220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 4·7-s + 8-s − 10-s − 13-s + 4·14-s + 16-s + 6·17-s + 8·19-s − 20-s − 4·23-s + 25-s − 26-s + 4·28-s + 2·29-s + 32-s + 6·34-s − 4·35-s − 10·37-s + 8·38-s − 40-s + 10·41-s − 4·43-s − 4·46-s + 9·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.51·7-s + 0.353·8-s − 0.316·10-s − 0.277·13-s + 1.06·14-s + 1/4·16-s + 1.45·17-s + 1.83·19-s − 0.223·20-s − 0.834·23-s + 1/5·25-s − 0.196·26-s + 0.755·28-s + 0.371·29-s + 0.176·32-s + 1.02·34-s − 0.676·35-s − 1.64·37-s + 1.29·38-s − 0.158·40-s + 1.56·41-s − 0.609·43-s − 0.589·46-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141570\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1130.44\)
Root analytic conductor: \(33.6220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 141570,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.927166583\)
\(L(\frac12)\) \(\approx\) \(5.927166583\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62503646571870, −12.86748207958043, −12.17340769994468, −11.96485946024040, −11.79406912673826, −11.08213250671852, −10.64600935720550, −10.20541773753009, −9.532899165611258, −9.095937815901669, −8.239368457917597, −7.930236128385580, −7.552399168183404, −7.200285199545823, −6.382193871896942, −5.751346673473070, −5.280956597493071, −4.929388143675418, −4.426662427345821, −3.703087878262519, −3.283337010957267, −2.682024232050877, −1.799281103200020, −1.385734448823509, −0.6632962315491734, 0.6632962315491734, 1.385734448823509, 1.799281103200020, 2.682024232050877, 3.283337010957267, 3.703087878262519, 4.426662427345821, 4.929388143675418, 5.280956597493071, 5.751346673473070, 6.382193871896942, 7.200285199545823, 7.552399168183404, 7.930236128385580, 8.239368457917597, 9.095937815901669, 9.532899165611258, 10.20541773753009, 10.64600935720550, 11.08213250671852, 11.79406912673826, 11.96485946024040, 12.17340769994468, 12.86748207958043, 13.62503646571870

Graph of the $Z$-function along the critical line