Properties

Label 2-141504-1.1-c1-0-94
Degree $2$
Conductor $141504$
Sign $1$
Analytic cond. $1129.91$
Root an. cond. $33.6142$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 11-s − 4·13-s + 2·17-s − 2·19-s − 2·23-s − 5·25-s − 27-s + 2·29-s − 8·31-s + 33-s + 6·37-s + 4·39-s − 6·41-s − 12·43-s + 6·47-s − 7·49-s − 2·51-s − 4·53-s + 2·57-s − 6·59-s + 4·61-s − 67-s + 2·69-s − 2·71-s − 10·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 0.301·11-s − 1.10·13-s + 0.485·17-s − 0.458·19-s − 0.417·23-s − 25-s − 0.192·27-s + 0.371·29-s − 1.43·31-s + 0.174·33-s + 0.986·37-s + 0.640·39-s − 0.937·41-s − 1.82·43-s + 0.875·47-s − 49-s − 0.280·51-s − 0.549·53-s + 0.264·57-s − 0.781·59-s + 0.512·61-s − 0.122·67-s + 0.240·69-s − 0.237·71-s − 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141504\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 67\)
Sign: $1$
Analytic conductor: \(1129.91\)
Root analytic conductor: \(33.6142\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 141504,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
67 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.84688654570161, −13.31361787344970, −12.80275674743364, −12.49375123372675, −11.91443953982718, −11.50304704651366, −11.15407445656449, −10.37178552263628, −10.05686812085895, −9.762686104513821, −9.081629935596840, −8.533171245528032, −7.891211190975064, −7.527436402389414, −7.057995372692979, −6.399842459625210, −5.947731253858402, −5.425693445746679, −4.854311926430924, −4.501520164682343, −3.714696384269678, −3.238309073249737, −2.426569953274720, −1.890373278934409, −1.237321306857859, 0, 0, 1.237321306857859, 1.890373278934409, 2.426569953274720, 3.238309073249737, 3.714696384269678, 4.501520164682343, 4.854311926430924, 5.425693445746679, 5.947731253858402, 6.399842459625210, 7.057995372692979, 7.527436402389414, 7.891211190975064, 8.533171245528032, 9.081629935596840, 9.762686104513821, 10.05686812085895, 10.37178552263628, 11.15407445656449, 11.50304704651366, 11.91443953982718, 12.49375123372675, 12.80275674743364, 13.31361787344970, 13.84688654570161

Graph of the $Z$-function along the critical line