Properties

Label 2-138600-1.1-c1-0-78
Degree $2$
Conductor $138600$
Sign $-1$
Analytic cond. $1106.72$
Root an. cond. $33.2675$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 11-s − 2·13-s − 6·17-s + 4·19-s + 8·23-s − 2·29-s − 4·31-s − 2·37-s − 10·41-s + 4·43-s − 8·47-s + 49-s + 10·53-s + 4·59-s − 10·61-s + 8·71-s + 6·73-s − 77-s + 4·79-s + 8·83-s + 6·89-s + 2·91-s − 14·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.377·7-s + 0.301·11-s − 0.554·13-s − 1.45·17-s + 0.917·19-s + 1.66·23-s − 0.371·29-s − 0.718·31-s − 0.328·37-s − 1.56·41-s + 0.609·43-s − 1.16·47-s + 1/7·49-s + 1.37·53-s + 0.520·59-s − 1.28·61-s + 0.949·71-s + 0.702·73-s − 0.113·77-s + 0.450·79-s + 0.878·83-s + 0.635·89-s + 0.209·91-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138600\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(1106.72\)
Root analytic conductor: \(33.2675\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 138600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.58486910569233, −13.23965623419484, −12.72822437539715, −12.27038616069103, −11.68207009020626, −11.30267379562406, −10.80625571814558, −10.35052375296810, −9.672485514631088, −9.303242923631392, −8.900485127909712, −8.426151595483190, −7.691411137731676, −7.162533830915724, −6.823407116659901, −6.377406177973220, −5.641744798968979, −4.950312852445718, −4.878160697264899, −3.905898239011201, −3.496012188769714, −2.858063029530672, −2.252123499614785, −1.599727163160233, −0.7838406484781164, 0, 0.7838406484781164, 1.599727163160233, 2.252123499614785, 2.858063029530672, 3.496012188769714, 3.905898239011201, 4.878160697264899, 4.950312852445718, 5.641744798968979, 6.377406177973220, 6.823407116659901, 7.162533830915724, 7.691411137731676, 8.426151595483190, 8.900485127909712, 9.303242923631392, 9.672485514631088, 10.35052375296810, 10.80625571814558, 11.30267379562406, 11.68207009020626, 12.27038616069103, 12.72822437539715, 13.23965623419484, 13.58486910569233

Graph of the $Z$-function along the critical line