Properties

Label 2-13552-1.1-c1-0-6
Degree $2$
Conductor $13552$
Sign $-1$
Analytic cond. $108.213$
Root an. cond. $10.4025$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s − 7-s + 9-s − 4·13-s + 4·15-s − 4·17-s + 2·21-s + 4·23-s − 25-s + 4·27-s + 6·29-s − 10·31-s + 2·35-s − 6·37-s + 8·39-s − 4·41-s + 12·43-s − 2·45-s + 10·47-s + 49-s + 8·51-s − 6·53-s − 2·59-s − 63-s + 8·65-s − 8·67-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s − 0.377·7-s + 1/3·9-s − 1.10·13-s + 1.03·15-s − 0.970·17-s + 0.436·21-s + 0.834·23-s − 1/5·25-s + 0.769·27-s + 1.11·29-s − 1.79·31-s + 0.338·35-s − 0.986·37-s + 1.28·39-s − 0.624·41-s + 1.82·43-s − 0.298·45-s + 1.45·47-s + 1/7·49-s + 1.12·51-s − 0.824·53-s − 0.260·59-s − 0.125·63-s + 0.992·65-s − 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13552\)    =    \(2^{4} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(108.213\)
Root analytic conductor: \(10.4025\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 13552,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.66456280969726, −15.86421033988600, −15.52174150972014, −15.01821033664150, −14.18939811578403, −13.74193015171583, −12.72288571512191, −12.42180716825497, −12.05834423984293, −11.25046912616094, −10.95877966935754, −10.43299322928026, −9.591369040459138, −9.001923932714252, −8.372627751569831, −7.415284833716489, −7.141523395813279, −6.447695337822393, −5.736025929390811, −5.069357053441686, −4.541574095530320, −3.797659971719760, −2.945646206375284, −2.075447225998316, −0.7230062005080416, 0, 0.7230062005080416, 2.075447225998316, 2.945646206375284, 3.797659971719760, 4.541574095530320, 5.069357053441686, 5.736025929390811, 6.447695337822393, 7.141523395813279, 7.415284833716489, 8.372627751569831, 9.001923932714252, 9.591369040459138, 10.43299322928026, 10.95877966935754, 11.25046912616094, 12.05834423984293, 12.42180716825497, 12.72288571512191, 13.74193015171583, 14.18939811578403, 15.01821033664150, 15.52174150972014, 15.86421033988600, 16.66456280969726

Graph of the $Z$-function along the critical line