Properties

Label 2-126400-1.1-c1-0-30
Degree $2$
Conductor $126400$
Sign $-1$
Analytic cond. $1009.30$
Root an. cond. $31.7696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s − 2·9-s + 4·13-s + 6·17-s − 8·19-s + 4·21-s + 5·27-s − 6·29-s + 5·31-s − 11·37-s − 4·39-s − 6·41-s + 43-s + 6·47-s + 9·49-s − 6·51-s + 3·53-s + 8·57-s − 9·59-s − 5·61-s + 8·63-s + 10·67-s + 6·71-s − 7·73-s + 79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s − 2/3·9-s + 1.10·13-s + 1.45·17-s − 1.83·19-s + 0.872·21-s + 0.962·27-s − 1.11·29-s + 0.898·31-s − 1.80·37-s − 0.640·39-s − 0.937·41-s + 0.152·43-s + 0.875·47-s + 9/7·49-s − 0.840·51-s + 0.412·53-s + 1.05·57-s − 1.17·59-s − 0.640·61-s + 1.00·63-s + 1.22·67-s + 0.712·71-s − 0.819·73-s + 0.112·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126400\)    =    \(2^{6} \cdot 5^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(1009.30\)
Root analytic conductor: \(31.7696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 126400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 7 T + p T^{2} \) 1.73.h
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.65877195739513, −13.27626183557372, −12.67987786787708, −12.28024881560329, −12.02506490045951, −11.28695313797905, −10.76320673369512, −10.45882701042428, −9.987868314932625, −9.384684173824854, −8.846317798151049, −8.444455073443695, −7.966509721029714, −7.084299992523252, −6.742126101938427, −6.141280894779321, −5.888556831779910, −5.417165949315728, −4.678640084125677, −3.900371740361381, −3.468203902160247, −3.062505040651863, −2.285743244807531, −1.501637091055535, −0.6270473643939869, 0, 0.6270473643939869, 1.501637091055535, 2.285743244807531, 3.062505040651863, 3.468203902160247, 3.900371740361381, 4.678640084125677, 5.417165949315728, 5.888556831779910, 6.141280894779321, 6.742126101938427, 7.084299992523252, 7.966509721029714, 8.444455073443695, 8.846317798151049, 9.384684173824854, 9.987868314932625, 10.45882701042428, 10.76320673369512, 11.28695313797905, 12.02506490045951, 12.28024881560329, 12.67987786787708, 13.27626183557372, 13.65877195739513

Graph of the $Z$-function along the critical line