Properties

Label 2-124800-1.1-c1-0-83
Degree $2$
Conductor $124800$
Sign $-1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 4·11-s − 13-s − 6·17-s + 5·19-s + 2·21-s + 6·23-s − 27-s + 29-s − 10·31-s − 4·33-s − 3·37-s + 39-s − 7·41-s + 8·43-s + 7·47-s − 3·49-s + 6·51-s + 3·53-s − 5·57-s − 6·59-s − 2·61-s − 2·63-s + 9·67-s − 6·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s + 1.20·11-s − 0.277·13-s − 1.45·17-s + 1.14·19-s + 0.436·21-s + 1.25·23-s − 0.192·27-s + 0.185·29-s − 1.79·31-s − 0.696·33-s − 0.493·37-s + 0.160·39-s − 1.09·41-s + 1.21·43-s + 1.02·47-s − 3/7·49-s + 0.840·51-s + 0.412·53-s − 0.662·57-s − 0.781·59-s − 0.256·61-s − 0.251·63-s + 1.09·67-s − 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.70026432725421, −13.24150549475019, −12.73180205150372, −12.38009690128753, −11.70810866497393, −11.50571592418934, −10.77773980605227, −10.60597654820285, −9.770880783473194, −9.305769287116779, −9.064176433356755, −8.597632081389222, −7.643460511562078, −7.119764343241377, −6.879694407355892, −6.360054637868383, −5.742840361612654, −5.283103190244607, −4.622940382168507, −4.128150521413456, −3.473588594995206, −3.026781733075350, −2.165632825869307, −1.509398301699228, −0.7806578742040454, 0, 0.7806578742040454, 1.509398301699228, 2.165632825869307, 3.026781733075350, 3.473588594995206, 4.128150521413456, 4.622940382168507, 5.283103190244607, 5.742840361612654, 6.360054637868383, 6.879694407355892, 7.119764343241377, 7.643460511562078, 8.597632081389222, 9.064176433356755, 9.305769287116779, 9.770880783473194, 10.60597654820285, 10.77773980605227, 11.50571592418934, 11.70810866497393, 12.38009690128753, 12.73180205150372, 13.24150549475019, 13.70026432725421

Graph of the $Z$-function along the critical line