Properties

Label 2-124800-1.1-c1-0-122
Degree $2$
Conductor $124800$
Sign $-1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·7-s + 9-s + 13-s + 2·17-s + 4·19-s − 4·21-s + 2·23-s − 27-s + 6·29-s − 10·31-s − 2·37-s − 39-s + 6·41-s − 4·43-s + 9·49-s − 2·51-s − 6·53-s − 4·57-s − 4·59-s − 6·61-s + 4·63-s − 2·67-s − 2·69-s − 10·71-s − 10·73-s − 4·79-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.51·7-s + 1/3·9-s + 0.277·13-s + 0.485·17-s + 0.917·19-s − 0.872·21-s + 0.417·23-s − 0.192·27-s + 1.11·29-s − 1.79·31-s − 0.328·37-s − 0.160·39-s + 0.937·41-s − 0.609·43-s + 9/7·49-s − 0.280·51-s − 0.824·53-s − 0.529·57-s − 0.520·59-s − 0.768·61-s + 0.503·63-s − 0.244·67-s − 0.240·69-s − 1.18·71-s − 1.17·73-s − 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.91406071716298, −13.19084677613675, −12.81186307798791, −12.14517475393759, −11.81804936057253, −11.36006524549426, −10.89890391748575, −10.58441201741282, −9.953890757033975, −9.389052245389017, −8.828566420393921, −8.363322906027722, −7.788510225250799, −7.326006031984882, −7.005750944554653, −6.076991351354496, −5.718051981207303, −5.216306665060060, −4.636565365317488, −4.353162666839978, −3.443516444747208, −2.981536015532261, −2.038299958069531, −1.439960839965743, −1.048106362170043, 0, 1.048106362170043, 1.439960839965743, 2.038299958069531, 2.981536015532261, 3.443516444747208, 4.353162666839978, 4.636565365317488, 5.216306665060060, 5.718051981207303, 6.076991351354496, 7.005750944554653, 7.326006031984882, 7.788510225250799, 8.363322906027722, 8.828566420393921, 9.389052245389017, 9.953890757033975, 10.58441201741282, 10.89890391748575, 11.36006524549426, 11.81804936057253, 12.14517475393759, 12.81186307798791, 13.19084677613675, 13.91406071716298

Graph of the $Z$-function along the critical line