Properties

Label 2-123981-1.1-c1-0-14
Degree $2$
Conductor $123981$
Sign $-1$
Analytic cond. $989.993$
Root an. cond. $31.4641$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 6-s + 3·8-s + 9-s − 11-s − 12-s + 13-s − 16-s − 18-s + 6·19-s + 22-s + 3·24-s − 5·25-s − 26-s + 27-s + 10·29-s − 8·31-s − 5·32-s − 33-s − 36-s + 6·37-s − 6·38-s + 39-s − 6·41-s − 2·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s + 1.06·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s + 0.277·13-s − 1/4·16-s − 0.235·18-s + 1.37·19-s + 0.213·22-s + 0.612·24-s − 25-s − 0.196·26-s + 0.192·27-s + 1.85·29-s − 1.43·31-s − 0.883·32-s − 0.174·33-s − 1/6·36-s + 0.986·37-s − 0.973·38-s + 0.160·39-s − 0.937·41-s − 0.304·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123981 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123981 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123981\)    =    \(3 \cdot 11 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(989.993\)
Root analytic conductor: \(31.4641\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123981,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74929025318704, −13.50466373977498, −12.83455874522193, −12.43159932421195, −11.78885367212698, −11.29583060863006, −10.71219298127821, −10.16488200642532, −9.862329800839249, −9.279729391007614, −9.025824417127450, −8.270021140967038, −8.064416559661328, −7.516116892000429, −7.073000578099856, −6.403510296651692, −5.655095504277554, −5.208505463114476, −4.574323631173810, −4.080545204698789, −3.403953472152221, −2.945370346304655, −2.112158223609268, −1.457414865217607, −0.8740211957307015, 0, 0.8740211957307015, 1.457414865217607, 2.112158223609268, 2.945370346304655, 3.403953472152221, 4.080545204698789, 4.574323631173810, 5.208505463114476, 5.655095504277554, 6.403510296651692, 7.073000578099856, 7.516116892000429, 8.064416559661328, 8.270021140967038, 9.025824417127450, 9.279729391007614, 9.862329800839249, 10.16488200642532, 10.71219298127821, 11.29583060863006, 11.78885367212698, 12.43159932421195, 12.83455874522193, 13.50466373977498, 13.74929025318704

Graph of the $Z$-function along the critical line