Properties

Label 2-123008-1.1-c1-0-2
Degree $2$
Conductor $123008$
Sign $-1$
Analytic cond. $982.223$
Root an. cond. $31.3404$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 4·7-s + 9-s − 2·11-s − 2·13-s + 4·15-s + 2·17-s − 2·19-s + 8·21-s + 4·23-s − 25-s − 4·27-s + 6·29-s − 4·33-s + 8·35-s − 10·37-s − 4·39-s − 6·41-s + 6·43-s + 2·45-s + 8·47-s + 9·49-s + 4·51-s + 6·53-s − 4·55-s − 4·57-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s + 1.51·7-s + 1/3·9-s − 0.603·11-s − 0.554·13-s + 1.03·15-s + 0.485·17-s − 0.458·19-s + 1.74·21-s + 0.834·23-s − 1/5·25-s − 0.769·27-s + 1.11·29-s − 0.696·33-s + 1.35·35-s − 1.64·37-s − 0.640·39-s − 0.937·41-s + 0.914·43-s + 0.298·45-s + 1.16·47-s + 9/7·49-s + 0.560·51-s + 0.824·53-s − 0.539·55-s − 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123008\)    =    \(2^{7} \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(982.223\)
Root analytic conductor: \(31.3404\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123008,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
31 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.75255720490269, −13.60798447333070, −12.99991617514051, −12.28179020625680, −11.96803463036860, −11.37515039126253, −10.64761329400192, −10.38400634154552, −9.978201606479185, −9.103505449259925, −8.944850728491064, −8.422121112916857, −7.978613729966330, −7.366559050969736, −7.173103200722483, −6.200760668325727, −5.589341665796436, −5.287092266463632, −4.546717909053271, −4.244362864125461, −3.207346198552329, −2.839430235599612, −2.251333330598688, −1.701988004885409, −1.251001137846504, 0, 1.251001137846504, 1.701988004885409, 2.251333330598688, 2.839430235599612, 3.207346198552329, 4.244362864125461, 4.546717909053271, 5.287092266463632, 5.589341665796436, 6.200760668325727, 7.173103200722483, 7.366559050969736, 7.978613729966330, 8.422121112916857, 8.944850728491064, 9.103505449259925, 9.978201606479185, 10.38400634154552, 10.64761329400192, 11.37515039126253, 11.96803463036860, 12.28179020625680, 12.99991617514051, 13.60798447333070, 13.75255720490269

Graph of the $Z$-function along the critical line