Properties

Label 2-1224-1.1-c1-0-18
Degree $2$
Conductor $1224$
Sign $-1$
Analytic cond. $9.77368$
Root an. cond. $3.12629$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 3·11-s − 13-s + 17-s − 3·19-s − 3·23-s − 4·25-s + 2·29-s − 4·31-s − 2·35-s − 6·37-s + 3·41-s − 5·43-s − 3·49-s + 8·53-s − 3·55-s − 2·59-s − 10·61-s − 65-s + 4·67-s + 8·71-s + 4·73-s + 6·77-s − 10·79-s − 16·83-s + 85-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 0.904·11-s − 0.277·13-s + 0.242·17-s − 0.688·19-s − 0.625·23-s − 4/5·25-s + 0.371·29-s − 0.718·31-s − 0.338·35-s − 0.986·37-s + 0.468·41-s − 0.762·43-s − 3/7·49-s + 1.09·53-s − 0.404·55-s − 0.260·59-s − 1.28·61-s − 0.124·65-s + 0.488·67-s + 0.949·71-s + 0.468·73-s + 0.683·77-s − 1.12·79-s − 1.75·83-s + 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1224\)    =    \(2^{3} \cdot 3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(9.77368\)
Root analytic conductor: \(3.12629\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1224,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.459623231881873822356567961753, −8.513820787940616730761937857356, −7.68974868342096212093047927681, −6.77543845197466226845406846618, −5.93758174354952614509205800358, −5.18833949456990331172943189244, −4.02121845958285722319390753632, −2.95216897524886256164197886588, −1.92607727089333104341553701985, 0, 1.92607727089333104341553701985, 2.95216897524886256164197886588, 4.02121845958285722319390753632, 5.18833949456990331172943189244, 5.93758174354952614509205800358, 6.77543845197466226845406846618, 7.68974868342096212093047927681, 8.513820787940616730761937857356, 9.459623231881873822356567961753

Graph of the $Z$-function along the critical line