Properties

Label 2-122304-1.1-c1-0-99
Degree $2$
Conductor $122304$
Sign $-1$
Analytic cond. $976.602$
Root an. cond. $31.2506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s + 9-s − 2·11-s − 13-s + 4·15-s + 6·17-s − 4·19-s − 4·23-s + 11·25-s − 27-s + 6·29-s + 8·31-s + 2·33-s + 10·37-s + 39-s + 4·41-s − 4·43-s − 4·45-s − 6·47-s − 6·51-s − 6·53-s + 8·55-s + 4·57-s + 6·59-s − 6·61-s + 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s + 1/3·9-s − 0.603·11-s − 0.277·13-s + 1.03·15-s + 1.45·17-s − 0.917·19-s − 0.834·23-s + 11/5·25-s − 0.192·27-s + 1.11·29-s + 1.43·31-s + 0.348·33-s + 1.64·37-s + 0.160·39-s + 0.624·41-s − 0.609·43-s − 0.596·45-s − 0.875·47-s − 0.840·51-s − 0.824·53-s + 1.07·55-s + 0.529·57-s + 0.781·59-s − 0.768·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122304\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(976.602\)
Root analytic conductor: \(31.2506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 122304,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.77207659288552, −13.09389963947354, −12.70687461587409, −12.14145802771899, −11.89968563830622, −11.57039925735720, −10.82113491682054, −10.61601469079277, −9.898502184357397, −9.646204046611710, −8.607936518178839, −8.249198328984242, −7.839045613921547, −7.551988493044379, −6.850201098155303, −6.286166717362311, −5.860052027817102, −4.988142824758674, −4.620507883357153, −4.218520734307085, −3.541612477786888, −2.988441753696431, −2.418299764193012, −1.297570368147212, −0.6809079479069218, 0, 0.6809079479069218, 1.297570368147212, 2.418299764193012, 2.988441753696431, 3.541612477786888, 4.218520734307085, 4.620507883357153, 4.988142824758674, 5.860052027817102, 6.286166717362311, 6.850201098155303, 7.551988493044379, 7.839045613921547, 8.249198328984242, 8.607936518178839, 9.646204046611710, 9.898502184357397, 10.61601469079277, 10.82113491682054, 11.57039925735720, 11.89968563830622, 12.14145802771899, 12.70687461587409, 13.09389963947354, 13.77207659288552

Graph of the $Z$-function along the critical line