Properties

Label 2-12168-1.1-c1-0-12
Degree $2$
Conductor $12168$
Sign $-1$
Analytic cond. $97.1619$
Root an. cond. $9.85707$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 2·7-s + 2·11-s − 6·17-s + 2·19-s + 8·23-s + 11·25-s − 6·29-s − 10·31-s − 8·35-s + 4·37-s + 4·43-s − 2·47-s − 3·49-s + 10·53-s − 8·55-s − 14·59-s − 2·61-s + 2·67-s − 6·71-s + 8·73-s + 4·77-s + 6·83-s + 24·85-s − 8·95-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.78·5-s + 0.755·7-s + 0.603·11-s − 1.45·17-s + 0.458·19-s + 1.66·23-s + 11/5·25-s − 1.11·29-s − 1.79·31-s − 1.35·35-s + 0.657·37-s + 0.609·43-s − 0.291·47-s − 3/7·49-s + 1.37·53-s − 1.07·55-s − 1.82·59-s − 0.256·61-s + 0.244·67-s − 0.712·71-s + 0.936·73-s + 0.455·77-s + 0.658·83-s + 2.60·85-s − 0.820·95-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12168\)    =    \(2^{3} \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(97.1619\)
Root analytic conductor: \(9.85707\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 12168,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.54978645152185, −16.09318325155085, −15.30206221475231, −15.03170568066920, −14.67354326898293, −13.87174507180603, −13.05769140456984, −12.66913300181750, −11.90751811311233, −11.39310505121316, −11.01477505811935, −10.74309622602674, −9.327836817294419, −9.072030704593218, −8.414901307000829, −7.727175824551424, −7.233159668573239, −6.823005484074539, −5.775961982964635, −4.873709564862152, −4.462689479088696, −3.749504381513336, −3.172725374930347, −2.066935556534262, −1.039082406148430, 0, 1.039082406148430, 2.066935556534262, 3.172725374930347, 3.749504381513336, 4.462689479088696, 4.873709564862152, 5.775961982964635, 6.823005484074539, 7.233159668573239, 7.727175824551424, 8.414901307000829, 9.072030704593218, 9.327836817294419, 10.74309622602674, 11.01477505811935, 11.39310505121316, 11.90751811311233, 12.66913300181750, 13.05769140456984, 13.87174507180603, 14.67354326898293, 15.03170568066920, 15.30206221475231, 16.09318325155085, 16.54978645152185

Graph of the $Z$-function along the critical line