Properties

Label 2-1210-1.1-c1-0-6
Degree $2$
Conductor $1210$
Sign $1$
Analytic cond. $9.66189$
Root an. cond. $3.10835$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s + 3·7-s − 8-s − 2·9-s − 10-s − 12-s − 3·14-s − 15-s + 16-s + 3·17-s + 2·18-s + 3·19-s + 20-s − 3·21-s + 24-s + 25-s + 5·27-s + 3·28-s + 9·29-s + 30-s − 5·31-s − 32-s − 3·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 1.13·7-s − 0.353·8-s − 2/3·9-s − 0.316·10-s − 0.288·12-s − 0.801·14-s − 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.471·18-s + 0.688·19-s + 0.223·20-s − 0.654·21-s + 0.204·24-s + 1/5·25-s + 0.962·27-s + 0.566·28-s + 1.67·29-s + 0.182·30-s − 0.898·31-s − 0.176·32-s − 0.514·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1210\)    =    \(2 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(9.66189\)
Root analytic conductor: \(3.10835\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1210,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.148842116\)
\(L(\frac12)\) \(\approx\) \(1.148842116\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 15 T + p T^{2} \) 1.61.ap
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.867093594057512094736215356103, −8.759639092048162651010568859765, −8.295199311121096801342382850468, −7.34064528302597351543746248338, −6.45878379574846454971229715659, −5.44872347708205944646551864373, −4.98686971409463722448062023795, −3.39105689658683572292638145407, −2.13538284795201551094974408589, −0.949917669447758428883942777957, 0.949917669447758428883942777957, 2.13538284795201551094974408589, 3.39105689658683572292638145407, 4.98686971409463722448062023795, 5.44872347708205944646551864373, 6.45878379574846454971229715659, 7.34064528302597351543746248338, 8.295199311121096801342382850468, 8.759639092048162651010568859765, 9.867093594057512094736215356103

Graph of the $Z$-function along the critical line