Properties

Label 2-119130-1.1-c1-0-32
Degree $2$
Conductor $119130$
Sign $-1$
Analytic cond. $951.257$
Root an. cond. $30.8424$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 11-s + 12-s − 6·13-s + 15-s + 16-s + 2·17-s − 18-s + 20-s − 22-s − 24-s + 25-s + 6·26-s + 27-s + 10·29-s − 30-s − 32-s + 33-s − 2·34-s + 36-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s + 0.288·12-s − 1.66·13-s + 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.223·20-s − 0.213·22-s − 0.204·24-s + 1/5·25-s + 1.17·26-s + 0.192·27-s + 1.85·29-s − 0.182·30-s − 0.176·32-s + 0.174·33-s − 0.342·34-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 119130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(119130\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(951.257\)
Root analytic conductor: \(30.8424\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 119130,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 - T \)
19 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85147260729747, −13.48899917059961, −12.63780308048080, −12.37056394027074, −11.97579496351723, −11.37991919362407, −10.72387386584109, −10.16781870239002, −9.870648792312370, −9.537881699747397, −8.930115701399986, −8.386159442362767, −8.035205947142896, −7.424806393095496, −6.832069144969776, −6.647519054238419, −5.834195065991381, −5.109260306315396, −4.829777182230496, −3.997585498066373, −3.319273291270560, −2.676018172283585, −2.322865319297066, −1.579299195562949, −0.9265255308484643, 0, 0.9265255308484643, 1.579299195562949, 2.322865319297066, 2.676018172283585, 3.319273291270560, 3.997585498066373, 4.829777182230496, 5.109260306315396, 5.834195065991381, 6.647519054238419, 6.832069144969776, 7.424806393095496, 8.035205947142896, 8.386159442362767, 8.930115701399986, 9.537881699747397, 9.870648792312370, 10.16781870239002, 10.72387386584109, 11.37991919362407, 11.97579496351723, 12.37056394027074, 12.63780308048080, 13.48899917059961, 13.85147260729747

Graph of the $Z$-function along the critical line