Properties

Label 2-118580-1.1-c1-0-15
Degree $2$
Conductor $118580$
Sign $1$
Analytic cond. $946.866$
Root an. cond. $30.7711$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·9-s + 4·13-s − 4·17-s + 8·19-s + 4·23-s + 25-s + 8·29-s + 4·31-s + 6·37-s − 8·41-s − 4·43-s − 3·45-s − 12·47-s − 10·53-s + 8·61-s + 4·65-s + 8·67-s + 12·71-s + 12·73-s + 8·79-s + 9·81-s + 4·83-s − 4·85-s − 10·89-s + 8·95-s + 2·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 9-s + 1.10·13-s − 0.970·17-s + 1.83·19-s + 0.834·23-s + 1/5·25-s + 1.48·29-s + 0.718·31-s + 0.986·37-s − 1.24·41-s − 0.609·43-s − 0.447·45-s − 1.75·47-s − 1.37·53-s + 1.02·61-s + 0.496·65-s + 0.977·67-s + 1.42·71-s + 1.40·73-s + 0.900·79-s + 81-s + 0.439·83-s − 0.433·85-s − 1.05·89-s + 0.820·95-s + 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 118580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 118580 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(118580\)    =    \(2^{2} \cdot 5 \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(946.866\)
Root analytic conductor: \(30.7711\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 118580,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.254383036\)
\(L(\frac12)\) \(\approx\) \(3.254383036\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67384282170576, −13.16213089222351, −12.75588813402181, −11.95571144611262, −11.63052905202932, −11.05303800975158, −10.96505880085922, −9.966428409766592, −9.772079492230900, −9.157131516248804, −8.627104579877141, −8.188898203259111, −7.866273797997961, −6.828040948063967, −6.583312509768420, −6.176190570334232, −5.390497166186138, −5.035085550688703, −4.570699209565358, −3.511533052751634, −3.275394343882204, −2.658805600982326, −1.953888245086521, −1.133763435751796, −0.6185856735562790, 0.6185856735562790, 1.133763435751796, 1.953888245086521, 2.658805600982326, 3.275394343882204, 3.511533052751634, 4.570699209565358, 5.035085550688703, 5.390497166186138, 6.176190570334232, 6.583312509768420, 6.828040948063967, 7.866273797997961, 8.188898203259111, 8.627104579877141, 9.157131516248804, 9.772079492230900, 9.966428409766592, 10.96505880085922, 11.05303800975158, 11.63052905202932, 11.95571144611262, 12.75588813402181, 13.16213089222351, 13.67384282170576

Graph of the $Z$-function along the critical line