Properties

Label 2-1184-1.1-c1-0-12
Degree $2$
Conductor $1184$
Sign $-1$
Analytic cond. $9.45428$
Root an. cond. $3.07478$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 4·5-s − 7-s + 6·9-s + 3·11-s + 2·13-s + 12·15-s + 8·17-s − 2·19-s + 3·21-s − 6·23-s + 11·25-s − 9·27-s − 8·31-s − 9·33-s + 4·35-s − 37-s − 6·39-s − 5·41-s − 2·43-s − 24·45-s + 11·47-s − 6·49-s − 24·51-s + 9·53-s − 12·55-s + 6·57-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.78·5-s − 0.377·7-s + 2·9-s + 0.904·11-s + 0.554·13-s + 3.09·15-s + 1.94·17-s − 0.458·19-s + 0.654·21-s − 1.25·23-s + 11/5·25-s − 1.73·27-s − 1.43·31-s − 1.56·33-s + 0.676·35-s − 0.164·37-s − 0.960·39-s − 0.780·41-s − 0.304·43-s − 3.57·45-s + 1.60·47-s − 6/7·49-s − 3.36·51-s + 1.23·53-s − 1.61·55-s + 0.794·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1184\)    =    \(2^{5} \cdot 37\)
Sign: $-1$
Analytic conductor: \(9.45428\)
Root analytic conductor: \(3.07478\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1184,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.543398122013917747193679813493, −8.339830392343634189508531416417, −7.53594316387635585160999233290, −6.80988404697903381946029941059, −5.98376476141732920027999353241, −5.15252674038388255907026116656, −3.99465509935121990247876564159, −3.62991491005395914988227234813, −1.17899122706032057657563867954, 0, 1.17899122706032057657563867954, 3.62991491005395914988227234813, 3.99465509935121990247876564159, 5.15252674038388255907026116656, 5.98376476141732920027999353241, 6.80988404697903381946029941059, 7.53594316387635585160999233290, 8.339830392343634189508531416417, 9.543398122013917747193679813493

Graph of the $Z$-function along the critical line