Properties

Label 2-116032-1.1-c1-0-2
Degree $2$
Conductor $116032$
Sign $1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·9-s − 3·11-s − 4·13-s − 6·17-s + 2·19-s + 6·23-s − 5·25-s − 5·27-s + 6·29-s + 4·31-s − 3·33-s − 37-s − 4·39-s + 9·41-s − 8·43-s − 3·47-s − 6·51-s + 3·53-s + 2·57-s + 12·59-s + 8·61-s + 4·67-s + 6·69-s − 15·71-s − 11·73-s − 5·75-s + ⋯
L(s)  = 1  + 0.577·3-s − 2/3·9-s − 0.904·11-s − 1.10·13-s − 1.45·17-s + 0.458·19-s + 1.25·23-s − 25-s − 0.962·27-s + 1.11·29-s + 0.718·31-s − 0.522·33-s − 0.164·37-s − 0.640·39-s + 1.40·41-s − 1.21·43-s − 0.437·47-s − 0.840·51-s + 0.412·53-s + 0.264·57-s + 1.56·59-s + 1.02·61-s + 0.488·67-s + 0.722·69-s − 1.78·71-s − 1.28·73-s − 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9448276458\)
\(L(\frac12)\) \(\approx\) \(0.9448276458\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.40099729284733, −13.30810718836472, −12.83151124053123, −12.02463236034565, −11.69252927963540, −11.23892759761145, −10.67843243448490, −10.04458891784477, −9.772577868932005, −9.092851321852672, −8.628832522720217, −8.281597202317017, −7.662207802219348, −7.200413001676259, −6.699130193329357, −6.057336083563729, −5.377539406413000, −4.997937793239295, −4.422547044095398, −3.792493597599646, −2.943397572419529, −2.605167576957341, −2.264174118268016, −1.274907456898013, −0.2817300032892027, 0.2817300032892027, 1.274907456898013, 2.264174118268016, 2.605167576957341, 2.943397572419529, 3.792493597599646, 4.422547044095398, 4.997937793239295, 5.377539406413000, 6.057336083563729, 6.699130193329357, 7.200413001676259, 7.662207802219348, 8.281597202317017, 8.628832522720217, 9.092851321852672, 9.772577868932005, 10.04458891784477, 10.67843243448490, 11.23892759761145, 11.69252927963540, 12.02463236034565, 12.83151124053123, 13.30810718836472, 13.40099729284733

Graph of the $Z$-function along the critical line