Properties

Label 2-340e2-1.1-c1-0-3
Degree $2$
Conductor $115600$
Sign $1$
Analytic cond. $923.070$
Root an. cond. $30.3820$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s − 2·9-s − 3·11-s + 4·13-s − 5·19-s + 2·21-s − 6·23-s + 5·27-s + 2·31-s + 3·33-s + 2·37-s − 4·39-s + 3·41-s − 4·43-s + 12·47-s − 3·49-s − 6·53-s + 5·57-s − 2·61-s + 4·63-s − 13·67-s + 6·69-s + 12·71-s + 11·73-s + 6·77-s − 10·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s − 2/3·9-s − 0.904·11-s + 1.10·13-s − 1.14·19-s + 0.436·21-s − 1.25·23-s + 0.962·27-s + 0.359·31-s + 0.522·33-s + 0.328·37-s − 0.640·39-s + 0.468·41-s − 0.609·43-s + 1.75·47-s − 3/7·49-s − 0.824·53-s + 0.662·57-s − 0.256·61-s + 0.503·63-s − 1.58·67-s + 0.722·69-s + 1.42·71-s + 1.28·73-s + 0.683·77-s − 1.12·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115600\)    =    \(2^{4} \cdot 5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(923.070\)
Root analytic conductor: \(30.3820\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 115600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4332029087\)
\(L(\frac12)\) \(\approx\) \(0.4332029087\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62251186699238, −13.09197780833849, −12.58013787464619, −12.22516023824843, −11.67408672353998, −11.02264989783459, −10.78942211840332, −10.32279882472258, −9.769019362367446, −9.202016026063305, −8.579788512970620, −8.240669708443957, −7.745100831279262, −7.004708412941053, −6.329471227420968, −6.122433519132340, −5.691666506715997, −5.037818617043892, −4.378745398173701, −3.838218913148084, −3.195551786653421, −2.605814095563707, −2.027984627614279, −1.080607982074925, −0.2289362176205603, 0.2289362176205603, 1.080607982074925, 2.027984627614279, 2.605814095563707, 3.195551786653421, 3.838218913148084, 4.378745398173701, 5.037818617043892, 5.691666506715997, 6.122433519132340, 6.329471227420968, 7.004708412941053, 7.745100831279262, 8.240669708443957, 8.579788512970620, 9.202016026063305, 9.769019362367446, 10.32279882472258, 10.78942211840332, 11.02264989783459, 11.67408672353998, 12.22516023824843, 12.58013787464619, 13.09197780833849, 13.62251186699238

Graph of the $Z$-function along the critical line