Properties

Label 115600.x
Number of curves $4$
Conductor $115600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 115600.x have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 115600.x do not have complex multiplication.

Modular form 115600.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} - 2 q^{9} - 3 q^{11} + 4 q^{13} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 15 & 5 \\ 3 & 1 & 5 & 15 \\ 15 & 5 & 1 & 3 \\ 5 & 15 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 115600.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
115600.x1 115600bq4 \([0, -1, 0, -14510208, 21279718912]\) \(-349938025/8\) \(-7724022080000000000\) \([]\) \(3628800\) \(2.7377\)  
115600.x2 115600bq3 \([0, -1, 0, -60208, 67118912]\) \(-25/2\) \(-1931005520000000000\) \([]\) \(1209600\) \(2.1884\)  
115600.x3 115600bq1 \([0, -1, 0, -13968, -761408]\) \(-121945/32\) \(-79093986099200\) \([]\) \(241920\) \(1.3837\) \(\Gamma_0(N)\)-optimal
115600.x4 115600bq2 \([0, -1, 0, 101632, 5619712]\) \(46969655/32768\) \(-80992241765580800\) \([]\) \(725760\) \(1.9330\)