Properties

Label 2-11550-1.1-c1-0-7
Degree $2$
Conductor $11550$
Sign $1$
Analytic cond. $92.2272$
Root an. cond. $9.60350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 7-s + 8-s + 9-s − 11-s − 12-s − 2·13-s − 14-s + 16-s + 6·17-s + 18-s − 4·19-s + 21-s − 22-s − 24-s − 2·26-s − 27-s − 28-s − 6·29-s − 4·31-s + 32-s + 33-s + 6·34-s + 36-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s − 0.554·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 0.917·19-s + 0.218·21-s − 0.213·22-s − 0.204·24-s − 0.392·26-s − 0.192·27-s − 0.188·28-s − 1.11·29-s − 0.718·31-s + 0.176·32-s + 0.174·33-s + 1.02·34-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(92.2272\)
Root analytic conductor: \(9.60350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.163956351\)
\(L(\frac12)\) \(\approx\) \(2.163956351\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.40217581695404, −15.92235247861064, −15.20387105418777, −14.69501082427704, −14.28363051352073, −13.44251789419850, −12.88843362645135, −12.52857585458680, −11.94927453206381, −11.31852430363938, −10.78090099574417, −9.964169105721578, −9.815953442362729, −8.728599195085854, −8.055038241971842, −7.218879546776753, −6.920282042103928, −6.003382967334737, −5.451373351938033, −5.060805429278582, −4.000246397237465, −3.595208414334346, −2.589176751144067, −1.819719844431265, −0.6101145848493949, 0.6101145848493949, 1.819719844431265, 2.589176751144067, 3.595208414334346, 4.000246397237465, 5.060805429278582, 5.451373351938033, 6.003382967334737, 6.920282042103928, 7.218879546776753, 8.055038241971842, 8.728599195085854, 9.815953442362729, 9.964169105721578, 10.78090099574417, 11.31852430363938, 11.94927453206381, 12.52857585458680, 12.88843362645135, 13.44251789419850, 14.28363051352073, 14.69501082427704, 15.20387105418777, 15.92235247861064, 16.40217581695404

Graph of the $Z$-function along the critical line