Properties

Label 2-112632-1.1-c1-0-10
Degree $2$
Conductor $112632$
Sign $1$
Analytic cond. $899.371$
Root an. cond. $29.9895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·7-s + 9-s − 6·11-s + 13-s + 2·17-s + 4·21-s − 5·25-s + 27-s + 2·29-s − 8·31-s − 6·33-s + 2·37-s + 39-s + 4·41-s − 4·43-s + 6·47-s + 9·49-s + 2·51-s − 2·53-s − 10·59-s + 10·61-s + 4·63-s − 8·67-s − 2·71-s + 14·73-s − 5·75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.51·7-s + 1/3·9-s − 1.80·11-s + 0.277·13-s + 0.485·17-s + 0.872·21-s − 25-s + 0.192·27-s + 0.371·29-s − 1.43·31-s − 1.04·33-s + 0.328·37-s + 0.160·39-s + 0.624·41-s − 0.609·43-s + 0.875·47-s + 9/7·49-s + 0.280·51-s − 0.274·53-s − 1.30·59-s + 1.28·61-s + 0.503·63-s − 0.977·67-s − 0.237·71-s + 1.63·73-s − 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112632\)    =    \(2^{3} \cdot 3 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(899.371\)
Root analytic conductor: \(29.9895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 112632,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.175829200\)
\(L(\frac12)\) \(\approx\) \(3.175829200\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78229883485416, −13.27270996750153, −12.62408044569220, −12.31730293031605, −11.62674753294579, −11.03433893240928, −10.81780712451003, −10.28186543889110, −9.713824531037932, −9.161839792805829, −8.559868758799357, −8.033796504172817, −7.804284579037224, −7.457037029847644, −6.749227791391637, −5.788157090385317, −5.554508954833030, −4.911993607738998, −4.515590060795886, −3.773586870922466, −3.218992492493268, −2.421626771446997, −2.065411965097708, −1.403120618209803, −0.5183732030047187, 0.5183732030047187, 1.403120618209803, 2.065411965097708, 2.421626771446997, 3.218992492493268, 3.773586870922466, 4.515590060795886, 4.911993607738998, 5.554508954833030, 5.788157090385317, 6.749227791391637, 7.457037029847644, 7.804284579037224, 8.033796504172817, 8.559868758799357, 9.161839792805829, 9.713824531037932, 10.28186543889110, 10.81780712451003, 11.03433893240928, 11.62674753294579, 12.31730293031605, 12.62408044569220, 13.27270996750153, 13.78229883485416

Graph of the $Z$-function along the critical line