Properties

Label 2-11200-1.1-c1-0-67
Degree $2$
Conductor $11200$
Sign $-1$
Analytic cond. $89.4324$
Root an. cond. $9.45687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 3·9-s − 11-s + 2·13-s − 4·17-s + 2·19-s − 5·23-s − 29-s − 2·31-s + 3·37-s + 12·41-s + 11·43-s − 2·47-s + 49-s + 6·53-s + 10·59-s − 4·61-s − 3·63-s + 67-s − 3·71-s − 77-s − 9·79-s + 9·81-s − 2·83-s − 6·89-s + 2·91-s − 14·97-s + ⋯
L(s)  = 1  + 0.377·7-s − 9-s − 0.301·11-s + 0.554·13-s − 0.970·17-s + 0.458·19-s − 1.04·23-s − 0.185·29-s − 0.359·31-s + 0.493·37-s + 1.87·41-s + 1.67·43-s − 0.291·47-s + 1/7·49-s + 0.824·53-s + 1.30·59-s − 0.512·61-s − 0.377·63-s + 0.122·67-s − 0.356·71-s − 0.113·77-s − 1.01·79-s + 81-s − 0.219·83-s − 0.635·89-s + 0.209·91-s − 1.42·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11200\)    =    \(2^{6} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(89.4324\)
Root analytic conductor: \(9.45687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.70705630925623, −16.06740615208795, −15.81801124530565, −14.91614573630964, −14.52796148492449, −13.87695415955428, −13.47957351671773, −12.74021628875876, −12.15064898249127, −11.40476836827563, −11.08341405319232, −10.54988671453806, −9.644841422452635, −9.109555719183774, −8.486753071590102, −7.946868806839628, −7.319218706959483, −6.479585974294943, −5.744889049711036, −5.440717142947947, −4.325523211970281, −3.916400539483368, −2.772771597588758, −2.311764166547204, −1.155418069093022, 0, 1.155418069093022, 2.311764166547204, 2.772771597588758, 3.916400539483368, 4.325523211970281, 5.440717142947947, 5.744889049711036, 6.479585974294943, 7.319218706959483, 7.946868806839628, 8.486753071590102, 9.109555719183774, 9.644841422452635, 10.54988671453806, 11.08341405319232, 11.40476836827563, 12.15064898249127, 12.74021628875876, 13.47957351671773, 13.87695415955428, 14.52796148492449, 14.91614573630964, 15.81801124530565, 16.06740615208795, 16.70705630925623

Graph of the $Z$-function along the critical line