Properties

Label 2-1120-1.1-c1-0-0
Degree $2$
Conductor $1120$
Sign $1$
Analytic cond. $8.94324$
Root an. cond. $2.99052$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5-s − 7-s + 6·9-s − 11-s − 13-s + 3·15-s − 3·17-s − 8·19-s + 3·21-s − 4·23-s + 25-s − 9·27-s + 3·29-s + 6·31-s + 3·33-s + 35-s − 8·37-s + 3·39-s + 10·41-s + 12·43-s − 6·45-s − 3·47-s + 49-s + 9·51-s + 12·53-s + 55-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.447·5-s − 0.377·7-s + 2·9-s − 0.301·11-s − 0.277·13-s + 0.774·15-s − 0.727·17-s − 1.83·19-s + 0.654·21-s − 0.834·23-s + 1/5·25-s − 1.73·27-s + 0.557·29-s + 1.07·31-s + 0.522·33-s + 0.169·35-s − 1.31·37-s + 0.480·39-s + 1.56·41-s + 1.82·43-s − 0.894·45-s − 0.437·47-s + 1/7·49-s + 1.26·51-s + 1.64·53-s + 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(8.94324\)
Root analytic conductor: \(2.99052\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4810181702\)
\(L(\frac12)\) \(\approx\) \(0.4810181702\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29261691325996525705142259579, −9.093977484607888450831108786040, −8.082664236299139230672104932190, −7.03203429907519168701130428882, −6.39507720125995463881200025485, −5.71040747037952554894779064599, −4.62883124954248530395330550273, −4.07013749920791298026838213221, −2.31633884961707820482961774566, −0.55069141102609449826337285771, 0.55069141102609449826337285771, 2.31633884961707820482961774566, 4.07013749920791298026838213221, 4.62883124954248530395330550273, 5.71040747037952554894779064599, 6.39507720125995463881200025485, 7.03203429907519168701130428882, 8.082664236299139230672104932190, 9.093977484607888450831108786040, 10.29261691325996525705142259579

Graph of the $Z$-function along the critical line