Properties

Label 2-10944-1.1-c1-0-30
Degree $2$
Conductor $10944$
Sign $1$
Analytic cond. $87.3882$
Root an. cond. $9.34816$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 4·11-s + 2·17-s − 19-s + 2·23-s − 5·25-s − 6·29-s + 6·31-s + 8·37-s − 10·41-s + 12·43-s − 10·47-s + 9·49-s + 2·53-s + 4·59-s + 10·61-s + 16·71-s − 2·73-s + 16·77-s + 10·79-s − 16·83-s + 2·89-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.51·7-s + 1.20·11-s + 0.485·17-s − 0.229·19-s + 0.417·23-s − 25-s − 1.11·29-s + 1.07·31-s + 1.31·37-s − 1.56·41-s + 1.82·43-s − 1.45·47-s + 9/7·49-s + 0.274·53-s + 0.520·59-s + 1.28·61-s + 1.89·71-s − 0.234·73-s + 1.82·77-s + 1.12·79-s − 1.75·83-s + 0.211·89-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10944 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10944 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10944\)    =    \(2^{6} \cdot 3^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(87.3882\)
Root analytic conductor: \(9.34816\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10944,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.069589008\)
\(L(\frac12)\) \(\approx\) \(3.069589008\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.75157824621791, −15.89900368030127, −15.20475955736730, −14.71229708847080, −14.37778008619741, −13.75802097382361, −13.15972686337792, −12.32394438444584, −11.82536608120132, −11.19792777156100, −11.06292867826007, −9.881209164096606, −9.626338882787104, −8.682145773987507, −8.254768440674015, −7.648329412757399, −6.974312946640946, −6.207821907449775, −5.524999049433093, −4.821069140655545, −4.159300327084081, −3.553915959144130, −2.377616113547066, −1.646357527889799, −0.8787371008903181, 0.8787371008903181, 1.646357527889799, 2.377616113547066, 3.553915959144130, 4.159300327084081, 4.821069140655545, 5.524999049433093, 6.207821907449775, 6.974312946640946, 7.648329412757399, 8.254768440674015, 8.682145773987507, 9.626338882787104, 9.881209164096606, 11.06292867826007, 11.19792777156100, 11.82536608120132, 12.32394438444584, 13.15972686337792, 13.75802097382361, 14.37778008619741, 14.71229708847080, 15.20475955736730, 15.89900368030127, 16.75157824621791

Graph of the $Z$-function along the critical line