Properties

Label 2-10830-1.1-c1-0-16
Degree $2$
Conductor $10830$
Sign $1$
Analytic cond. $86.4779$
Root an. cond. $9.29935$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s − 2·7-s + 8-s + 9-s − 10-s + 4·11-s + 12-s + 6·13-s − 2·14-s − 15-s + 16-s + 4·17-s + 18-s − 20-s − 2·21-s + 4·22-s + 4·23-s + 24-s + 25-s + 6·26-s + 27-s − 2·28-s − 6·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s + 0.288·12-s + 1.66·13-s − 0.534·14-s − 0.258·15-s + 1/4·16-s + 0.970·17-s + 0.235·18-s − 0.223·20-s − 0.436·21-s + 0.852·22-s + 0.834·23-s + 0.204·24-s + 1/5·25-s + 1.17·26-s + 0.192·27-s − 0.377·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10830 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10830 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10830\)    =    \(2 \cdot 3 \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(86.4779\)
Root analytic conductor: \(9.29935\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10830,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.715086594\)
\(L(\frac12)\) \(\approx\) \(4.715086594\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
19 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.26559462417002, −15.94220477729701, −15.25518298142248, −14.87910440889292, −14.10217514700244, −13.73879456184940, −13.19005119030554, −12.54471547133889, −12.01512072602714, −11.46991317682877, −10.74325332359197, −10.21745022717389, −9.311470400399279, −8.875875239952506, −8.298667398991772, −7.336051975631522, −6.993907074285125, −6.090358109586712, −5.789545261646105, −4.639232438708309, −3.924810954921145, −3.448460497880277, −2.983400728425747, −1.701957946653454, −0.9512781326397814, 0.9512781326397814, 1.701957946653454, 2.983400728425747, 3.448460497880277, 3.924810954921145, 4.639232438708309, 5.789545261646105, 6.090358109586712, 6.993907074285125, 7.336051975631522, 8.298667398991772, 8.875875239952506, 9.311470400399279, 10.21745022717389, 10.74325332359197, 11.46991317682877, 12.01512072602714, 12.54471547133889, 13.19005119030554, 13.73879456184940, 14.10217514700244, 14.87910440889292, 15.25518298142248, 15.94220477729701, 16.26559462417002

Graph of the $Z$-function along the critical line