Properties

Label 2-10780-1.1-c1-0-0
Degree $2$
Conductor $10780$
Sign $1$
Analytic cond. $86.0787$
Root an. cond. $9.27786$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s + 9-s − 11-s + 13-s − 2·15-s − 2·17-s + 6·23-s + 25-s + 4·27-s − 2·29-s + 3·31-s + 2·33-s + 8·37-s − 2·39-s + 43-s + 45-s − 8·47-s + 4·51-s − 6·53-s − 55-s + 3·59-s − 2·61-s + 65-s − 8·67-s − 12·69-s + 3·71-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s + 1/3·9-s − 0.301·11-s + 0.277·13-s − 0.516·15-s − 0.485·17-s + 1.25·23-s + 1/5·25-s + 0.769·27-s − 0.371·29-s + 0.538·31-s + 0.348·33-s + 1.31·37-s − 0.320·39-s + 0.152·43-s + 0.149·45-s − 1.16·47-s + 0.560·51-s − 0.824·53-s − 0.134·55-s + 0.390·59-s − 0.256·61-s + 0.124·65-s − 0.977·67-s − 1.44·69-s + 0.356·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10780\)    =    \(2^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(86.0787\)
Root analytic conductor: \(9.27786\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10780,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.215252229\)
\(L(\frac12)\) \(\approx\) \(1.215252229\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.63544587704824, −16.13080352561183, −15.47157916703177, −14.87400627177570, −14.26767931991792, −13.53252300503095, −12.94879365078881, −12.63610976954072, −11.66472977117808, −11.37922152663846, −10.80071775636401, −10.26501502955247, −9.562521265209285, −8.925664926495908, −8.258964244611212, −7.430336070246587, −6.736200909353114, −6.153035717480830, −5.682824919640352, −4.880256728541810, −4.497149583517459, −3.308305490362354, −2.578276971418592, −1.495538756749576, −0.5692062302265030, 0.5692062302265030, 1.495538756749576, 2.578276971418592, 3.308305490362354, 4.497149583517459, 4.880256728541810, 5.682824919640352, 6.153035717480830, 6.736200909353114, 7.430336070246587, 8.258964244611212, 8.925664926495908, 9.562521265209285, 10.26501502955247, 10.80071775636401, 11.37922152663846, 11.66472977117808, 12.63610976954072, 12.94879365078881, 13.53252300503095, 14.26767931991792, 14.87400627177570, 15.47157916703177, 16.13080352561183, 16.63544587704824

Graph of the $Z$-function along the critical line