Properties

Label 2-104040-1.1-c1-0-76
Degree $2$
Conductor $104040$
Sign $-1$
Analytic cond. $830.763$
Root an. cond. $28.8229$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s + 2·13-s + 4·19-s + 8·23-s + 25-s − 6·29-s − 4·35-s + 6·37-s + 2·41-s + 4·43-s − 8·47-s + 9·49-s − 10·53-s − 8·59-s − 6·61-s − 2·65-s + 4·67-s − 8·71-s − 10·73-s − 12·83-s + 14·89-s + 8·91-s − 4·95-s − 10·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s + 0.554·13-s + 0.917·19-s + 1.66·23-s + 1/5·25-s − 1.11·29-s − 0.676·35-s + 0.986·37-s + 0.312·41-s + 0.609·43-s − 1.16·47-s + 9/7·49-s − 1.37·53-s − 1.04·59-s − 0.768·61-s − 0.248·65-s + 0.488·67-s − 0.949·71-s − 1.17·73-s − 1.31·83-s + 1.48·89-s + 0.838·91-s − 0.410·95-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(104040\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(830.763\)
Root analytic conductor: \(28.8229\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 104040,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.00935688446935, −13.54243342069118, −12.81413222247884, −12.69441271163800, −11.73893096288824, −11.48353807666776, −11.09599004020996, −10.80412355629218, −10.06383339751557, −9.375686375751550, −8.992133360118018, −8.487149803829824, −7.876873898615414, −7.518673592078692, −7.186655885356755, −6.297338531307339, −5.829538992895116, −5.114291922676678, −4.765958737770459, −4.285509080327362, −3.493517157053114, −3.030884109027898, −2.260498050200141, −1.281233251200247, −1.242678935596306, 0, 1.242678935596306, 1.281233251200247, 2.260498050200141, 3.030884109027898, 3.493517157053114, 4.285509080327362, 4.765958737770459, 5.114291922676678, 5.829538992895116, 6.297338531307339, 7.186655885356755, 7.518673592078692, 7.876873898615414, 8.487149803829824, 8.992133360118018, 9.375686375751550, 10.06383339751557, 10.80412355629218, 11.09599004020996, 11.48353807666776, 11.73893096288824, 12.69441271163800, 12.81413222247884, 13.54243342069118, 14.00935688446935

Graph of the $Z$-function along the critical line