Properties

Label 2-102960-1.1-c1-0-95
Degree $2$
Conductor $102960$
Sign $-1$
Analytic cond. $822.139$
Root an. cond. $28.6729$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 11-s − 13-s − 4·17-s + 2·19-s − 4·23-s + 25-s + 6·29-s − 8·37-s + 6·41-s + 4·43-s − 7·49-s + 6·53-s + 55-s − 12·59-s + 6·61-s − 65-s + 10·67-s − 12·71-s + 2·73-s + 8·79-s + 4·83-s − 4·85-s − 6·89-s + 2·95-s − 16·97-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.301·11-s − 0.277·13-s − 0.970·17-s + 0.458·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s − 1.31·37-s + 0.937·41-s + 0.609·43-s − 49-s + 0.824·53-s + 0.134·55-s − 1.56·59-s + 0.768·61-s − 0.124·65-s + 1.22·67-s − 1.42·71-s + 0.234·73-s + 0.900·79-s + 0.439·83-s − 0.433·85-s − 0.635·89-s + 0.205·95-s − 1.62·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(102960\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(822.139\)
Root analytic conductor: \(28.6729\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 102960,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.03474040091694, −13.58386421987227, −12.99968572484375, −12.42144690474116, −12.16161054889777, −11.45600106628998, −11.10804985805664, −10.42670330428423, −10.08949141672766, −9.524663654966544, −9.031974491539825, −8.588229470478498, −8.019942908395521, −7.409926666590762, −6.902231878568163, −6.335878277332688, −5.972328738980508, −5.225275504839093, −4.776304080932998, −4.171577014768518, −3.586117730736944, −2.841594488498453, −2.290414381733353, −1.676634040381187, −0.9066928021582388, 0, 0.9066928021582388, 1.676634040381187, 2.290414381733353, 2.841594488498453, 3.586117730736944, 4.171577014768518, 4.776304080932998, 5.225275504839093, 5.972328738980508, 6.335878277332688, 6.902231878568163, 7.409926666590762, 8.019942908395521, 8.588229470478498, 9.031974491539825, 9.524663654966544, 10.08949141672766, 10.42670330428423, 11.10804985805664, 11.45600106628998, 12.16161054889777, 12.42144690474116, 12.99968572484375, 13.58386421987227, 14.03474040091694

Graph of the $Z$-function along the critical line