Properties

Label 2-102960-1.1-c1-0-91
Degree $2$
Conductor $102960$
Sign $-1$
Analytic cond. $822.139$
Root an. cond. $28.6729$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s − 11-s − 13-s + 4·17-s − 6·19-s − 4·23-s + 25-s − 2·29-s − 4·31-s − 4·35-s + 4·37-s + 10·41-s − 4·43-s − 8·47-s + 9·49-s − 2·53-s + 55-s − 4·59-s + 14·61-s + 65-s + 2·67-s − 12·71-s + 2·73-s − 4·77-s − 8·79-s + 12·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s − 0.301·11-s − 0.277·13-s + 0.970·17-s − 1.37·19-s − 0.834·23-s + 1/5·25-s − 0.371·29-s − 0.718·31-s − 0.676·35-s + 0.657·37-s + 1.56·41-s − 0.609·43-s − 1.16·47-s + 9/7·49-s − 0.274·53-s + 0.134·55-s − 0.520·59-s + 1.79·61-s + 0.124·65-s + 0.244·67-s − 1.42·71-s + 0.234·73-s − 0.455·77-s − 0.900·79-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(102960\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(822.139\)
Root analytic conductor: \(28.6729\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 102960,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.24155670666865, −13.40162837521492, −12.98183485639105, −12.45959595818132, −11.97312373484521, −11.48760369939529, −11.09753223688565, −10.60758383042046, −10.17426326216356, −9.489269480741728, −8.983541377428245, −8.271685969600750, −7.940148119100594, −7.760095769181982, −6.993111582306926, −6.435241119903814, −5.601044534653789, −5.417269448766343, −4.530490179424333, −4.339321481250243, −3.661009038597264, −2.907995397416966, −2.132418033532113, −1.733977786576069, −0.8942928872295801, 0, 0.8942928872295801, 1.733977786576069, 2.132418033532113, 2.907995397416966, 3.661009038597264, 4.339321481250243, 4.530490179424333, 5.417269448766343, 5.601044534653789, 6.435241119903814, 6.993111582306926, 7.760095769181982, 7.940148119100594, 8.271685969600750, 8.983541377428245, 9.489269480741728, 10.17426326216356, 10.60758383042046, 11.09753223688565, 11.48760369939529, 11.97312373484521, 12.45959595818132, 12.98183485639105, 13.40162837521492, 14.24155670666865

Graph of the $Z$-function along the critical line