Properties

Label 2-102410-1.1-c1-0-50
Degree $2$
Conductor $102410$
Sign $-1$
Analytic cond. $817.747$
Root an. cond. $28.5962$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s + 5-s − 2·6-s − 8-s + 9-s − 10-s − 11-s + 2·12-s − 2·13-s + 2·15-s + 16-s − 18-s − 19-s + 20-s + 22-s − 2·24-s + 25-s + 2·26-s − 4·27-s − 6·29-s − 2·30-s + 4·31-s − 32-s − 2·33-s + 36-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s + 0.577·12-s − 0.554·13-s + 0.516·15-s + 1/4·16-s − 0.235·18-s − 0.229·19-s + 0.223·20-s + 0.213·22-s − 0.408·24-s + 1/5·25-s + 0.392·26-s − 0.769·27-s − 1.11·29-s − 0.365·30-s + 0.718·31-s − 0.176·32-s − 0.348·33-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(102410\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(817.747\)
Root analytic conductor: \(28.5962\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 102410,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.15866005797890, −13.53121889988534, −13.02877879551878, −12.62585258486895, −12.05223177935268, −11.26753474267997, −11.11797317397754, −10.29149437671464, −9.902223298336573, −9.436698638837973, −9.124435748516486, −8.402556500483557, −8.215379617802206, −7.530987181406220, −7.201703717091221, −6.545897058472513, −5.801286816952701, −5.529611788701328, −4.557523583232614, −4.130879719202961, −3.156686138588206, −2.949217802237088, −2.160910750046138, −1.870367141005643, −0.9223034244112003, 0, 0.9223034244112003, 1.870367141005643, 2.160910750046138, 2.949217802237088, 3.156686138588206, 4.130879719202961, 4.557523583232614, 5.529611788701328, 5.801286816952701, 6.545897058472513, 7.201703717091221, 7.530987181406220, 8.215379617802206, 8.402556500483557, 9.124435748516486, 9.436698638837973, 9.902223298336573, 10.29149437671464, 11.11797317397754, 11.26753474267997, 12.05223177935268, 12.62585258486895, 13.02877879551878, 13.53121889988534, 14.15866005797890

Graph of the $Z$-function along the critical line