Properties

Label 2-101568-1.1-c1-0-53
Degree $2$
Conductor $101568$
Sign $-1$
Analytic cond. $811.024$
Root an. cond. $28.4784$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s − 4·7-s + 9-s + 4·11-s + 2·13-s − 2·15-s + 2·17-s + 4·21-s − 25-s − 27-s + 2·29-s − 4·33-s − 8·35-s − 10·37-s − 2·39-s − 6·41-s − 8·43-s + 2·45-s + 8·47-s + 9·49-s − 2·51-s − 6·53-s + 8·55-s − 4·59-s + 14·61-s − 4·63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s − 1.51·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s − 0.516·15-s + 0.485·17-s + 0.872·21-s − 1/5·25-s − 0.192·27-s + 0.371·29-s − 0.696·33-s − 1.35·35-s − 1.64·37-s − 0.320·39-s − 0.937·41-s − 1.21·43-s + 0.298·45-s + 1.16·47-s + 9/7·49-s − 0.280·51-s − 0.824·53-s + 1.07·55-s − 0.520·59-s + 1.79·61-s − 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 101568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 101568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(101568\)    =    \(2^{6} \cdot 3 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(811.024\)
Root analytic conductor: \(28.4784\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 101568,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
23 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73843795258438, −13.55923806684211, −13.09114625476947, −12.40497322223474, −12.05609664881432, −11.77524305253062, −10.86624138758283, −10.54628066945354, −9.976473784258070, −9.534957489528887, −9.307705603035321, −8.604646150908013, −8.108564897164839, −7.103679911289232, −6.771230176588057, −6.450794994505206, −5.878479997766452, −5.517315268078909, −4.846261179160598, −4.027869531518425, −3.510436935239108, −3.141133847756612, −2.161007708606574, −1.575682124678353, −0.8766774043828788, 0, 0.8766774043828788, 1.575682124678353, 2.161007708606574, 3.141133847756612, 3.510436935239108, 4.027869531518425, 4.846261179160598, 5.517315268078909, 5.878479997766452, 6.450794994505206, 6.771230176588057, 7.103679911289232, 8.108564897164839, 8.604646150908013, 9.307705603035321, 9.534957489528887, 9.976473784258070, 10.54628066945354, 10.86624138758283, 11.77524305253062, 12.05609664881432, 12.40497322223474, 13.09114625476947, 13.55923806684211, 13.73843795258438

Graph of the $Z$-function along the critical line