L(s) = 1 | − 4·7-s − 9-s − 25-s − 8·31-s − 12·41-s − 8·47-s + 2·49-s + 4·63-s − 16·71-s + 20·73-s − 8·79-s + 81-s + 12·89-s + 4·97-s − 20·103-s − 8·113-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + ⋯ |
L(s) = 1 | − 1.51·7-s − 1/3·9-s − 1/5·25-s − 1.43·31-s − 1.87·41-s − 1.16·47-s + 2/7·49-s + 0.503·63-s − 1.89·71-s + 2.34·73-s − 0.900·79-s + 1/9·81-s + 1.27·89-s + 0.406·97-s − 1.97·103-s − 0.752·113-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.731165254200104943256288475859, −9.305105979499750932454228317401, −8.809826645876322506737955261902, −8.245731709282772253188317593201, −7.66923514874669183620554411553, −6.99633859425930818805324226984, −6.58205012953080931163933328415, −6.13077306062514132451431095306, −5.43486074061117596459630394809, −4.93087965132095068268358123213, −3.94091703780078230463130708591, −3.41498290649813059166192679797, −2.85634942869738531000039787839, −1.77764217441541021456177625268, 0,
1.77764217441541021456177625268, 2.85634942869738531000039787839, 3.41498290649813059166192679797, 3.94091703780078230463130708591, 4.93087965132095068268358123213, 5.43486074061117596459630394809, 6.13077306062514132451431095306, 6.58205012953080931163933328415, 6.99633859425930818805324226984, 7.66923514874669183620554411553, 8.245731709282772253188317593201, 8.809826645876322506737955261902, 9.305105979499750932454228317401, 9.731165254200104943256288475859