L(s) = 1 | + 2-s − 3-s + 4-s − 6-s + 8-s + 9-s − 12-s + 16-s + 18-s − 4·19-s − 24-s − 6·25-s − 27-s − 4·29-s + 32-s + 36-s − 4·38-s − 12·41-s − 8·43-s − 48-s − 14·49-s − 6·50-s + 20·53-s − 54-s + 4·57-s − 4·58-s + 16·59-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.288·12-s + 1/4·16-s + 0.235·18-s − 0.917·19-s − 0.204·24-s − 6/5·25-s − 0.192·27-s − 0.742·29-s + 0.176·32-s + 1/6·36-s − 0.648·38-s − 1.87·41-s − 1.21·43-s − 0.144·48-s − 2·49-s − 0.848·50-s + 2.74·53-s − 0.136·54-s + 0.529·57-s − 0.525·58-s + 2.08·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.565624415378647973335060348448, −8.093027696258890903844982944309, −7.48141419590004485294178768762, −7.03413405283409759862266438597, −6.65821052891035658426720424305, −6.06460192375792306110998505550, −5.74438286891327077413779181910, −5.13047739965993028491477828844, −4.76434682235528064136085705255, −4.02423816127241355215978975673, −3.71653948518943110660099077738, −2.96384737810928641099071647807, −2.10551341230024945663696972418, −1.54017298869936497866543931819, 0,
1.54017298869936497866543931819, 2.10551341230024945663696972418, 2.96384737810928641099071647807, 3.71653948518943110660099077738, 4.02423816127241355215978975673, 4.76434682235528064136085705255, 5.13047739965993028491477828844, 5.74438286891327077413779181910, 6.06460192375792306110998505550, 6.65821052891035658426720424305, 7.03413405283409759862266438597, 7.48141419590004485294178768762, 8.093027696258890903844982944309, 8.565624415378647973335060348448