L(s) = 1 | − 4·5-s + 4·7-s − 2·9-s − 4·11-s − 4·13-s + 2·25-s − 16·35-s + 12·43-s + 8·45-s + 16·47-s + 9·49-s + 16·55-s − 4·61-s − 8·63-s + 16·65-s + 20·67-s − 16·77-s − 5·81-s − 16·91-s + 8·99-s + 12·101-s + 8·103-s − 4·107-s + 4·113-s + 8·117-s − 10·121-s + 28·125-s + ⋯ |
L(s) = 1 | − 1.78·5-s + 1.51·7-s − 2/3·9-s − 1.20·11-s − 1.10·13-s + 2/5·25-s − 2.70·35-s + 1.82·43-s + 1.19·45-s + 2.33·47-s + 9/7·49-s + 2.15·55-s − 0.512·61-s − 1.00·63-s + 1.98·65-s + 2.44·67-s − 1.82·77-s − 5/9·81-s − 1.67·91-s + 0.804·99-s + 1.19·101-s + 0.788·103-s − 0.386·107-s + 0.376·113-s + 0.739·117-s − 0.909·121-s + 2.50·125-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 802816 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 802816 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.098681382024412731658064042949, −7.60669620667117230334580612361, −7.33738117792255002879146989083, −7.08458527518240061849455651795, −6.05418523802166600744858353834, −5.67939354494067973280289925981, −5.16542238567969836254694300670, −4.77922937487002835281324915984, −4.27419960188694524212471687413, −3.91058908136761919842529082491, −3.25684639917526338714188955496, −2.35648801922349828239873492037, −2.30676446591740616355718333113, −0.911211315540143404857619909068, 0,
0.911211315540143404857619909068, 2.30676446591740616355718333113, 2.35648801922349828239873492037, 3.25684639917526338714188955496, 3.91058908136761919842529082491, 4.27419960188694524212471687413, 4.77922937487002835281324915984, 5.16542238567969836254694300670, 5.67939354494067973280289925981, 6.05418523802166600744858353834, 7.08458527518240061849455651795, 7.33738117792255002879146989083, 7.60669620667117230334580612361, 8.098681382024412731658064042949