# Properties

 Label 2.2.56.1-256.1-c Base field $$\Q(\sqrt{14})$$ Weight $[2, 2]$ Level norm $256$ Level $[256, 16, 16]$ Dimension $1$ CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{14})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 14$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[256, 16, 16]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $80$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 4]$ $\phantom{-}0$
5 $[5, 5, -w + 3]$ $-2$
5 $[5, 5, w + 3]$ $-2$
7 $[7, 7, -2w - 7]$ $\phantom{-}4$
9 $[9, 3, 3]$ $-2$
11 $[11, 11, w + 5]$ $-2$
11 $[11, 11, -w + 5]$ $-2$
13 $[13, 13, -w - 1]$ $-2$
13 $[13, 13, -w + 1]$ $-2$
31 $[31, 31, 2w - 5]$ $\phantom{-}0$
31 $[31, 31, -2w - 5]$ $\phantom{-}0$
43 $[43, 43, 7w + 27]$ $\phantom{-}6$
43 $[43, 43, 3w + 13]$ $\phantom{-}6$
47 $[47, 47, 2w - 3]$ $\phantom{-}8$
47 $[47, 47, -2w - 3]$ $\phantom{-}8$
61 $[61, 61, 7w + 25]$ $-2$
61 $[61, 61, -5w - 17]$ $-2$
67 $[67, 67, -w - 9]$ $\phantom{-}10$
67 $[67, 67, w - 9]$ $\phantom{-}10$
101 $[101, 101, 3w - 5]$ $\phantom{-}6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w - 4]$ $-1$