L(s) = 1 | + 2-s + 4-s − 8·5-s − 4·7-s + 8-s + 9-s − 8·10-s + 11-s − 4·14-s + 16-s + 18-s − 8·20-s + 22-s + 38·25-s − 4·28-s + 32-s + 32·35-s + 36-s − 4·37-s − 8·40-s + 8·43-s + 44-s − 8·45-s − 2·49-s + 38·50-s + 8·53-s − 8·55-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 3.57·5-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 2.52·10-s + 0.301·11-s − 1.06·14-s + 1/4·16-s + 0.235·18-s − 1.78·20-s + 0.213·22-s + 38/5·25-s − 0.755·28-s + 0.176·32-s + 5.40·35-s + 1/6·36-s − 0.657·37-s − 1.26·40-s + 1.21·43-s + 0.150·44-s − 1.19·45-s − 2/7·49-s + 5.37·50-s + 1.09·53-s − 1.07·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 383328 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383328 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.235820094350727824625666284447, −7.72339303053252541131209387915, −7.68407763492968955980629110622, −7.03737354779624543347790680337, −6.60367482888104144370679944075, −6.46917181705411800265373292912, −5.42222207046297112948173299542, −4.87437307057030940088074522867, −4.25842178547984493307347569445, −3.99255436866847289087860194041, −3.43242489959271970824287162411, −3.34833436263269527102959669443, −2.53491081695155997479876397633, −0.890028096017018980688822052293, 0,
0.890028096017018980688822052293, 2.53491081695155997479876397633, 3.34833436263269527102959669443, 3.43242489959271970824287162411, 3.99255436866847289087860194041, 4.25842178547984493307347569445, 4.87437307057030940088074522867, 5.42222207046297112948173299542, 6.46917181705411800265373292912, 6.60367482888104144370679944075, 7.03737354779624543347790680337, 7.68407763492968955980629110622, 7.72339303053252541131209387915, 8.235820094350727824625666284447