L(s) = 1 | + 2·2-s + 2·4-s + 2·11-s − 4·16-s + 2·17-s + 4·22-s + 3·25-s − 8·29-s − 14·31-s − 8·32-s + 4·34-s − 22·41-s + 4·44-s − 6·49-s + 6·50-s − 16·58-s − 28·62-s − 8·64-s − 12·67-s + 4·68-s − 44·82-s + 12·83-s − 10·97-s − 12·98-s + 6·100-s + 2·101-s + 18·107-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + 0.603·11-s − 16-s + 0.485·17-s + 0.852·22-s + 3/5·25-s − 1.48·29-s − 2.51·31-s − 1.41·32-s + 0.685·34-s − 3.43·41-s + 0.603·44-s − 6/7·49-s + 0.848·50-s − 2.10·58-s − 3.55·62-s − 64-s − 1.46·67-s + 0.485·68-s − 4.85·82-s + 1.31·83-s − 1.01·97-s − 1.21·98-s + 3/5·100-s + 0.199·101-s + 1.74·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.049482569072556957084623899644, −7.56615086280161211634482849681, −7.02380893687740458028342182937, −6.77967599288021445811070982425, −6.25192664355428406770711078675, −5.64604133292153262797010919189, −5.39211491249495973511722312830, −4.92722060787361327282561211012, −4.41192491011343815654726284063, −3.65700393671907007804811149800, −3.52584436216380051991723342939, −3.02394747843726523989697691673, −1.98977316231956606937571008941, −1.62807662458849928650119019247, 0,
1.62807662458849928650119019247, 1.98977316231956606937571008941, 3.02394747843726523989697691673, 3.52584436216380051991723342939, 3.65700393671907007804811149800, 4.41192491011343815654726284063, 4.92722060787361327282561211012, 5.39211491249495973511722312830, 5.64604133292153262797010919189, 6.25192664355428406770711078675, 6.77967599288021445811070982425, 7.02380893687740458028342182937, 7.56615086280161211634482849681, 8.049482569072556957084623899644