Properties

Label 2.53.a_abe
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $1 - 30 x^{2} + 2809 x^{4}$
Frobenius angles:  $\pm0.204332046898$, $\pm0.795667953102$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-19}, \sqrt{34})\)
Galois group:  $C_2^2$
Jacobians:  $152$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2780$ $7728400$ $22164586940$ $62334183040000$ $174887469536855900$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $54$ $2750$ $148878$ $7899918$ $418195494$ $22164812750$ $1174711139838$ $62259677454238$ $3299763591802134$ $174887468708198750$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 152 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53^{2}}$.

Endomorphism algebra over $\F_{53}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-19}, \sqrt{34})\).
Endomorphism algebra over $\overline{\F}_{53}$
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.abe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-646}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.a_be$4$(not in LMFDB)