Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 30 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.204332046898$, $\pm0.795667953102$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-19}, \sqrt{34})\) |
Galois group: | $C_2^2$ |
Jacobians: | $152$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2780$ | $7728400$ | $22164586940$ | $62334183040000$ | $174887469536855900$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2750$ | $148878$ | $7899918$ | $418195494$ | $22164812750$ | $1174711139838$ | $62259677454238$ | $3299763591802134$ | $174887468708198750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 152 curves (of which all are hyperelliptic):
- $y^2=5 x^6+51 x^4+47 x^3+16 x^2+37$
- $y^2=51 x^6+44 x^5+21 x^4+31 x^3+4 x^2+50 x+21$
- $y^2=49 x^6+35 x^5+42 x^4+9 x^3+8 x^2+47 x+42$
- $y^2=51 x^6+13 x^5+5 x^4+2 x^3+51 x^2+46 x+39$
- $y^2=49 x^6+26 x^5+10 x^4+4 x^3+49 x^2+39 x+25$
- $y^2=37 x^6+48 x^5+39 x^4+10 x^3+52 x^2+43 x+52$
- $y^2=21 x^6+43 x^5+25 x^4+20 x^3+51 x^2+33 x+51$
- $y^2=35 x^6+41 x^5+17 x^4+23 x^3+33 x^2+12 x+10$
- $y^2=18 x^6+44 x^5+20 x^3+40 x+24$
- $y^2=41 x^6+22 x^5+43 x^4+26 x^3+36 x^2+31 x+4$
- $y^2=29 x^6+44 x^5+33 x^4+52 x^3+19 x^2+9 x+8$
- $y^2=24 x^6+36 x^5+23 x^4+28 x^3+9 x^2+52 x+32$
- $y^2=31 x^6+34 x^5+52 x^4+32 x^3+2 x^2+4 x+40$
- $y^2=29 x^6+9 x^5+40 x^3+24 x^2+38 x+14$
- $y^2=5 x^6+18 x^5+27 x^3+48 x^2+23 x+28$
- $y^2=25 x^6+8 x^5+26 x^4+38 x^3+51 x^2+16 x+36$
- $y^2=22 x^6+9 x^5+33 x^4+27 x^3+23 x^2+22 x+38$
- $y^2=44 x^6+18 x^5+13 x^4+x^3+46 x^2+44 x+23$
- $y^2=52 x^6+41 x^5+51 x^4+37 x^3+34 x^2+49 x+46$
- $y^2=51 x^6+29 x^5+49 x^4+21 x^3+15 x^2+45 x+39$
- and 132 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-19}, \sqrt{34})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.abe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-646}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.a_be | $4$ | (not in LMFDB) |