Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 27 x^{2} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.274235028360$, $\pm0.725764971640$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{151}, \sqrt{-205})\) |
Galois group: | $C_2^2$ |
Jacobians: | $84$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7949$ | $63186601$ | $496980669044$ | $3938485606596025$ | $31181719937671189829$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $7976$ | $704970$ | $62772468$ | $5584059450$ | $496980047126$ | $44231334895530$ | $3936588599865508$ | $350356403707485210$ | $31181719945376196056$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
- $y^2=7 x^6+80 x^5+84 x^4+43 x^3+12 x^2+87 x+20$
- $y^2=41 x^6+22 x^5+14 x^4+48 x^3+37 x^2+77 x+58$
- $y^2=34 x^6+66 x^5+42 x^4+55 x^3+22 x^2+53 x+85$
- $y^2=8 x^6+84 x^5+87 x^4+71 x^3+77 x^2+39 x+44$
- $y^2=24 x^6+74 x^5+83 x^4+35 x^3+53 x^2+28 x+43$
- $y^2=59 x^6+20 x^5+86 x^4+22 x^3+54 x^2+3 x+68$
- $y^2=88 x^6+60 x^5+80 x^4+66 x^3+73 x^2+9 x+26$
- $y^2=81 x^6+83 x^5+72 x^4+72 x^3+40 x^2+63 x+53$
- $y^2=65 x^6+71 x^5+38 x^4+38 x^3+31 x^2+11 x+70$
- $y^2=50 x^6+33 x^5+27 x^4+7 x^3+5 x^2+17 x+29$
- $y^2=61 x^6+10 x^5+81 x^4+21 x^3+15 x^2+51 x+87$
- $y^2=5 x^6+30 x^5+12 x^4+11 x^3+57 x^2+27 x+55$
- $y^2=15 x^6+x^5+36 x^4+33 x^3+82 x^2+81 x+76$
- $y^2=10 x^6+57 x^5+57 x^4+71 x^3+45 x^2+9 x+29$
- $y^2=30 x^6+82 x^5+82 x^4+35 x^3+46 x^2+27 x+87$
- $y^2=23 x^6+9 x^5+51 x^4+75 x^3+73 x^2+28 x+12$
- $y^2=69 x^6+27 x^5+64 x^4+47 x^3+41 x^2+84 x+36$
- $y^2=20 x^6+43 x^5+45 x^4+82 x^3+50 x^2+51 x+30$
- $y^2=60 x^6+40 x^5+46 x^4+68 x^3+61 x^2+64 x+1$
- $y^2=62 x^6+56 x^5+65 x^4+85 x^3+50 x^2+70 x+87$
- and 64 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{151}, \sqrt{-205})\). |
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.bb 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-30955}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.a_abb | $4$ | (not in LMFDB) |